K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2024

\(B=\dfrac{1}{6}+\dfrac{1}{6^2}+\dfrac{1}{6^3}+...+\dfrac{1}{6^{2023}}+\dfrac{1}{6^{2024}}\)

\(6B=1+\dfrac{1}{6}+\dfrac{1}{6^2}+...+\dfrac{1}{6^{2022}}+\dfrac{1}{6^{2023}}\)

\(6B-B=\left(1+\dfrac{1}{6}+\dfrac{1}{6^2}+...+\dfrac{1}{6^{2022}}+\dfrac{1}{6^{2023}}\right)-\left(\dfrac{1}{6}+\dfrac{1}{6^2}+\dfrac{1}{6^3}+...+\dfrac{1}{6^{2023}}+\dfrac{1}{6^{2024}}\right)\)

\(5B=1-\dfrac{1}{6^{2024}}\)

\(B=\dfrac{1}{5}-\dfrac{1}{5.6^{2024}}< \dfrac{1}{5}\)

\(\Rightarrow B< \dfrac{1}{5}\)

17 tháng 5 2024

Cho hình vẽ bên dưới khi đó An là đường gì

bạn ơi đề sai ở chỗ dấu "  ,  "  phải không?? bạn hãy sửa đề đi 

30 tháng 4 2015

Bạn Nguyễn Thị Bích Phương ơi, mình sửa lại đề rồi đó. Bạn giải giúp mình với.

DD
1 tháng 3 2021

\(A=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{20}\)

\(=\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)+\frac{1}{12}+\left(\frac{1}{13}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+...+\frac{1}{20}\right)\)

\(>\left(\frac{1}{9}+\frac{1}{9}+\frac{1}{9}\right)+\left(\frac{1}{12}+\frac{1}{12}+\frac{1}{12}\right)+\frac{1}{12}+\left(\frac{1}{16}+...+\frac{1}{16}\right)+\left(\frac{1}{24}+...+\frac{1}{24}\right)\)

\(=\frac{1}{3}+\frac{1}{4}+\frac{1}{12}+\frac{1}{4}+\frac{1}{6}=1+\frac{1}{12}\)

\(B=\frac{1}{5}+\frac{1}{6}+...+\frac{1}{18}+\frac{1}{19}\)

\(=\left(\frac{1}{5}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+...+\frac{1}{14}\right)+\left(\frac{1}{15}+...+\frac{1}{19}\right)\)

\(< \left(\frac{1}{5}+...+\frac{1}{5}\right)+\left(\frac{1}{10}+...+\frac{1}{10}\right)+\left(\frac{1}{15}+...+\frac{1}{15}\right)\)

\(=\frac{5}{5}+\frac{5}{10}+\frac{5}{15}=1+\frac{5}{6}\)

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

5 tháng 5 2021

B< 1+(1/1.2+1/2.3+...+1/62.63)

B<1+(1-1/2+1/2-1/3+...+1/62-1/63)

B<1+1-1/63

B<2-1/63

B<6-3/189

mà 6-3/189<6 

Vậy B<6

b, gọi D=2/3.4/5....10000/10001

Ta có: 1/2<2/3     3/4<4/5      .. .....      9999/10000<10000/10001

=> C<D                 1

C.D=1/2.3.4.....9999/10000.2/3.4/5...10000/10001

C.D=1/10001       2

Từ 1 : C<D => C.C<C.D<1/10001

                   =>C^2<1/10001<1/10000

                   =>C^2<(1/100)^2

Vậy C<1/100 (đpcm)

6 tháng 2 2020

*Có : 52 < 5.6 => \(\frac{1}{5^2}>\frac{1}{5.6}\)

         62 < 6.7 =>\(\frac{1}{6^2}>\frac{1}{6.7}\)

   ....

         1002 < 100 . 101 => \(\frac{1}{100^2}>\frac{1}{100.101}\)

Cộng từng vế có :

\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...\frac{1}{100}-\frac{1}{101}\)

\(A>\frac{1}{5}-\frac{1}{101}\)

Mà \(\frac{1}{5}-\frac{1}{101}=\frac{101-5}{105}=\frac{96}{505}\)

=> \(A>\frac{96}{505}\)

Mà \(\frac{1}{6}=\frac{96}{576}< \frac{96}{505}\)

=> \(A>\frac{1}{6}\)(1)

*Có 52 > 5.4 => \(\frac{1}{5^2}< \frac{1}{5.4}\)

.......

    1002 > 100.99 => \(\frac{1}{100^2}< \frac{1}{100.99}\)

Cộng từng vế có :

........ => A < \(\frac{96}{400}\)

Có \(\frac{1}{4}=\frac{100}{400}>\frac{96}{400}\)

=> A < \(\frac{1}{4}\)(2)

Từ (1)(2) => đpcm

\(\text{Ta thấy :}\)

\(\frac{1}{5^2}>\frac{1}{5.6}\)

\(\frac{1}{6^2}>\frac{1}{6.7}\)

\(......................................\)

\(\frac{1}{100^2}>\frac{1}{100.101}\)

\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(\Rightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow A>\frac{1}{5}-\frac{1}{101}=\frac{101-5}{105}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\)

\(\Rightarrow A>\frac{1}{6}\left(1\right)\)

\(\text{Lại thấy :}\)

\(\frac{1}{5^2}< \frac{1}{5.4}\)

\(\frac{1}{6^2}< \frac{1}{5.6}\)

\(..................................\)

\(\frac{1}{100^2}< \frac{1}{100.99}\)

\(\text{Tương tự như trên ta tính được }:\)

\(A< \frac{96}{400}< \frac{100}{400}=\frac{1}{4}\)

\(\Rightarrow A< \frac{1}{4}\left(2\right)\)

\(\text{Từ (1) và (2)}\Rightarrow\frac{1}{6}< A< \frac{1}{4}\)

28 tháng 3 2018

a,1/51 > 1/100

  1/52 > 1/100

   1/53 > 1/100

    ...

     1/100=1/100

=>H>1/100 + 1/100 + 1/100 +...+1/100

    H>50/100=1/2   

          1/51<1/50

         1/52<1/50

           ....

           1/100<1/50

=>H<1/50+1/50+...+1/50

     H<50/50=1

 Vay1/2<H<1

1 tháng 7 2020

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{48.49}\)

\(A< 1-\frac{1}{49}=\frac{48}{49}< \frac{48}{48}< \frac{40}{48}=\frac{5}{6}\)