Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Từ 4 chữ số 0, 1, 2, 3:
- Hàng trăm có 3 cách chọn.
- Hàng chục có 3 cách chọn.
- Hàng đơn vị có 2 cách chọn.
Vậy có tất cả 3.3.2 = 18 số tự nhiên khác nhau có 3 chữ số được lập từ 0, 1, 2, 3.
b) - Trường hợp 1: hàng đơn vị là số 0 như vậy hàng trăm có 3 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 3 = 6 số có thể lập được.
- Trường hợp 2: hàng đơn vị là số 2 như vậy hàng trăm có 2 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 2 = 4 số có thể lập được.
Vậy có thể lập 6 + 4 = 10 số tự nhiên chẵn có ba chữ số khác nhau.
TH1: 2 chẵn 2 lẻ
=>Có \(C^2_5\cdot C^2_4\cdot2=120\left(cách\right)\)
TH2: 3 lẻ, 1 chẵn
=>Có \(C^3_5\cdot4\cdot4!=960\left(cách\right)\)
TH3: 4 lẻ
=>Có \(C^4_5\cdot4!=120\left(cách\right)\)
=>Có 120+960+120=1200 cách
Gọi STN có 3 chữ số là \(\overline {abc} \)
- a có 4 cách ( khác 0).
- b có 4 cách (khác a).
- c có 3 cách (khác a, b).
Vậy có thể lập được 4. 4. 3= 48 số tự nhiên có ba chữ số khác nhau.
a: \(\overline{abcd}\)
a có 7 cách chọn
b có 6 cách
c có 5 cách
d có 4 cách
=>Có 7*6*5*4=840 cách
b: Bộ ba chia hết cho 9 sẽ có thể là (1;2;6); (1;3;5); (2;3;4)
Mỗi bộ có 3!=6(cách)
=>Có 6*3=18 cách
c: \(\overline{abcde}\)
e có 3 cách
a có 6 cách
b có 5 cách
c có 4 cách
d có 3 cách
=>Có 3*6*5*4*3=1080 cách
Gọi số có 6 chữ số dạng \(\overline{abcdef}\)
- TH1: \(f=0\)
\(\Rightarrow\) Bộ abcde có \(A_9^5\) cách chọn và hoán vị
TH2: \(f\ne0\Rightarrow f\) có 4 cách chọn (từ các chữ số 2,4,6,8)
a có 8 cách chọn (khác 0 và f), bộ bcde có \(A_8^4\) cách chọn
\(\Rightarrow4.8.A_8^4\) số
Vậy tổng cộng lập được: \(A_9^5+4.8.A_8^4=68880\) số thỏa mãn
Gọi số cần tìm là \(\overline{abcdef}\)
TH1: 0,1,2 là 3 số cuối
=>\(\overline{abc012};\overline{abc210}\)
a có 6 cách
b có 5 cách
c có 4 cách
=>CÓ 6*5*4*2=240 cách
TH2: \(\overline{ab\left\{0,1,2\right\}f}\)
0,1,2 có 3!=6 cách
a có 5 cách
b có 4 cách
f có 3 cách
=>Có 360 cách
TH3: \(\overline{a\left\{0,1,2\right\}ef}\)
0,1,2 có 3!=6 cách
f có 2 cách
e có 5 cách
a có 4 cách
=>Có 6*3*5*4=360 cách
TH4: \(\overline{\left\{0,1,2\right\}def}\)
{0;1;2} có 4 cách
f có 3 cách
d có 5 cách
e có 4 cách
=>Có 4*3*5*4=240 cách
=>Có 120+120+360+360+240=1200 cách
TH1 (012)def : chọn a từ (1,2) có 2 cách
chọn b từ (012)/(a) có 2 cách
chọn c từ (012)/(ab) có 1 cách
chọn f chẵn từ (4,6) có 2 cách
với d và e chọn 2 số từ 4 số còn lại và xếp nên có 4A2 cách
vậy có 2.2.1.4A2.2 số
TH2 a(012)ef
xếp chỗ cho 3 số (012) có 3! cách
chọn f từ (4,6) có 2 cách
chọn ae từ 4 số còn lại và xếp có 4A2 cách
vậy có 3!.2.4A2 số
TH3 ab(012)f
tương tự TH2
TH4 : abc(012):
chọn f chẵn từ (0,2) có 2 cách
chọn e từ (012)/(a) có 2 cách
chọn d từ (012)/(ab) có 1 cách
với abc chọn 3 số từ 5 số còn lại và xếp nên có 5A3 cách
vậy có 2.2.1.5A3 số
tổng 4 TH ta có
2.2.1.4A2.2+3!.2.4A2+3!.2.4A2+2.2.1.5A3=624 số
Gọi các số thỏa mãn ycbt là \(\overline{\alpha\beta\gamma\delta}\)
Khi đó \(\delta\in\left\{4,6,8\right\}\) -> Có 3 cách.
TH1: \(\alpha,\beta,\gamma\) đều lẻ \(\Rightarrow\) Có \(A^3_4=24\) cách.
TH2: Trong các số \(\alpha,\beta,\gamma\) có đúng 1 số chẵn
\(\Rightarrow\) Có \(3.2.4.3=72\) cách.
TH3: Trong các số \(\alpha,\beta,\gamma\) có đúng 1 số lẻ.
\(\Rightarrow\) Có \(3.4.2.1=24\) cách.
\(\Rightarrow\) Có tất cả \(24+72+24=120\) cách chọn bộ \(\left(\alpha,\beta,\gamma\right)\)
\(\Rightarrow\) Có tất cả \(3.120=360\) số thỏa mãn ycbt.
bạn thử đếm đi