Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)\(a=3\frac{3}{4}\)
suy ra \(\frac{\left(3\frac{3}{4}-1,75\right):0,01}{\left(1-0,75\right)x80}\)
= 10
b) nếu A = 41,25 thì ta có \(\frac{\left(a-1,75\right):0,01}{\left(1-0,75\right)x80}=41,25\)
suy ra ( a -1,75) : 0,01: ( 1-0,75) x 80 = 41.25
( a - 1, 75 ) : 0,01 : 0,25 = 41,25 : 80
( a - 1, 75 ) : 0,01 : 0,25 = 33/64
a - 1,75 = 33 / 64 x 0,25 x 0,01
a - 1,75 = 33/25600
a = 33/ 25600+ 1,75
a = 1,751289063
=
b) Ta có:
\(A=\frac{\left(a-1,75\right)\div0,01}{\left(1-0,75\right)\times80}=41,25\)
\(\frac{\left(a-1,75\right)\div0,01}{0,25\times80}=41,25\)
\(\left(a-1,75\right)\div0,01\div20=41,25\)
\(\left(a-1,75\right)\div0,01=41,25\times20\)
\(\left(a-1,75\right)\div0,01=825\)
\(\left(a-1,75\right)=825\times0,01\)
\(a-1,75=8,25\)
\(a=8,25+1,75\)
\(a=10\)
Vậy a phải bằng 10 thì biểu thức A có giá trị là 41,25
Biểu thức 1 :
1 4/5 x 5/6 = 9/5 x 5/6 = 45 /30 = 3/2
Biểu thức 2 :
15/16 : 11 /4 = 15/16 x 4/11 = 15/44
Tk cho mk nha ! Kết bạn với mk nhé !
\(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x\left(1-\frac{1}{5}\right)x\left(1-\frac{1}{6}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}\)
\(=\frac{1.2.3.4.5}{2.3.4.5.6}=\frac{1}{6}\)
(3/10+4/5x1/2):1/8/9-1/1/3
=(3/10+4/10):17/9-4/3
=7/10:17/9-4/3
=63/170-4/3
=-491/510
3y + 1/2y + 1/4y = \(1\frac{1}{2}\)
15/4y = \(1\frac{1}{2}\)
y = \(1\frac{1}{2}:\frac{15}{4}=\frac{3}{2}:\frac{15}{4}=\frac{2}{5}\)
Ta có:
\(A=\frac{2021^{2021}+1}{2021^{2022}+1}\Leftrightarrow10A=\frac{2021^{2022}+10}{2021^{2022}+1}=1+\frac{9}{2021^{2022}+1}\)
\(B=\frac{2021^{2022}-1}{2021^{2023}-1}\Leftrightarrow10B=\frac{2021^{2023}-10}{2021^{2023}-1}=1-\frac{9}{2021^{2023}-1}\)
Hay ta đang so sánh: \(\frac{9}{2021^{2022}};\frac{9}{2021^{2023}}\)
Mà \(\frac{9}{2021^{2022}}>\frac{9}{2021^{2023}}\)nên \(\frac{2021^{2021}+1}{2021^{2022}+1}>\frac{2021^{2022}-1}{2021^{2023}-1}\)hay\(A>B\)
Vậy \(A>B\)
\(\dfrac{2021\times2023-1}{2020\times2023+2022}\\ =\dfrac{2023\times\left(2020+1\right)-1}{2023\times2020+2022}\\ =\dfrac{2023\times2020+2023\times1-1}{2023\times2020+2022}\\ =\dfrac{2023\times2020+2023-1}{2023\times2020+2022}\\ =\dfrac{2023\times2020+\left(2023-1\right)}{2023\times2020+2022}\\ =\dfrac{2023\times2020+2022}{2023\times2020+2022}\\ =1\)
\(\dfrac{2021\times2023-1}{2020\times2023+2022}=\dfrac{\left(2020+1\right)\times2023-1}{2020\times2023+2022}=\dfrac{2020\times2023+1\times2023-1}{2020\times2023+2022}\)
\(=\dfrac{2020\times2023+2022}{2020\times2023+2022}=1\)