Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1-1/2+1/3-1/4+...+1/199-1/200
=(1+1/3+...+1/199)-(1/2+1/4+...+1/200)
=(1+1/2+1/3+...+1/199+1/200)-2(1/2+1/4+...+1/200)
=(1+1/2+1/3+...+1/199+1/200)-(1+1/2+...+1/100)
=1/101+1/102+...+1/200 (đpcm)
Xét vế phải\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{199}-\frac{1}{200}\)
=\(\left(1+\frac{1}{3}+\frac{1}{5}+..+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
=\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}-\frac{1}{4}-...-\frac{1}{200}\right)\)
=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-...-\frac{1}{100}\)
=\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Làm ơn giải giúp mình nhanh nhanh nhé, mình đang cần gấp, ai giải được mình k cho
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
100 phân số \(\frac{1}{100}\)
\(< \frac{1}{100}.100\)
\(< 1\left(đpcm\right)\)
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{199}+\frac{1}{200}\)
\(< \frac{1}{100}+\frac{1}{100}+.....+\frac{1}{100}\)( 100 phân số )
\(< \frac{1}{100}.100=\frac{100}{100}=1\)
Vậy : \(\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}< 1\)
Ta có: \(\dfrac{1}{101}>\dfrac{1}{200}\)
Tương tự ta có: \(\dfrac{1}{102}>\dfrac{1}{200}\) ;....; \(\dfrac{1}{199}>\dfrac{1}{200}\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{1}{200}.100\)
\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{100}{200}\)
\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{1}{2}\left(đpcm\right)\)
1/101+1/102+..+1/200=(1+1/2+1/3+...+1/100)+1/101+1/102+1/103+...+1/200-(1+1/2+1/3+...+1/100)
=(1/2+1/4+1/6+...+1/200)+(1+1/3+1/5+...+1/199)-2(1/2+1/4+1/6+...+1/200)
=(1+1/3+1/5+...+1/199)-(1/2+1/4+1/6+...+1/200)
=1-1/2+1/3-1/4+1/5-1/6+...+1/199-1/200
suy ra ĐPCM
nguyen thieu cong thanh ơi cho mình hỏi:
sao lại là :2(1/2+1/4+1/6+...+1/200)
phải là : (1/2+1/4+1/6+...+1/200) chứ
đúng hok?????
Đặt A = 1/101 + 1/102 + 1/103 + ... + 1/199 + 1/200
Số số hạng của A:
200 - 101 + 1 = 100 (số hạng)
Ta có:
1/101 < 1/100
1/102 < 1/100
1/103 < 1/100
...
1/200 < 1/100
Cộng vế với vế, ta có:
1/101 + 1/102 + 1/103 + ... + 1/199 + 1/200 < 1/100 + 1/100 + 1/100 + ... + 1/100
⇒ A < 100/100 = 1
Vậy A < 1
\(\dfrac{1}{101}\)+\(\)....+\(\dfrac{1}{200}\)<\(\dfrac{1}{101}\).(200-101+1)
=\(\dfrac{100}{101}\)<1
\(\dfrac{1}{101}\)