\(\frac{1}{2}\)\(\times\)\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2020

Trước hết ta chứng minh BĐT

\(\frac{2k-1}{2k}< \frac{\sqrt{3k-2}}{\sqrt{3k+1}}\left(1\right)\)

Thật vậy, (1) \(\Leftrightarrow\left(2k-1\right)\sqrt{3k+1}< 2k\sqrt{3k-2}\)\(\Leftrightarrow\left(4k^2-4k+1\right)\left(3k+1\right)< 4k^2\left(3k-2\right)\)

\(\Leftrightarrow12k^3-8k^2-k+1< 12k^3-8k^2\)\(\Leftrightarrow k-1>0\left(\forall k\ge2\right)\)

Trong (1), lần lượt thay k bằng 1,2,...,n ta được:

\(\frac{1}{2}\le\frac{\sqrt{1}}{\sqrt{4}},\frac{3}{4}\le\frac{\sqrt{4}}{\sqrt{7}},....,\frac{2n-1}{2n}< \frac{\sqrt{3n-2}}{\sqrt{3n+1}}\)

Nhân từng vế các BĐT trên ta có:

\(\frac{1}{2}.\frac{3}{4}....\frac{2n-1}{2n}< \frac{\sqrt{1}}{\sqrt{4}}.\frac{\sqrt{4}}{\sqrt{7}}...\frac{\sqrt{3n-2}}{\sqrt{3n+1}}=\frac{1}{\sqrt{3n+1}}\)

28 tháng 7 2019

Với n = 0,7 thì BĐT đúng chăng?

13 tháng 8 2017

A.\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)\left(n+1-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\) 

=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b. ap dungtinh B =\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)

7 tháng 8 2019

Hỏi đáp Toán

21 tháng 8 2017

Đề có sai ko bn?Phương Phan Thùy