Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 11:
Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))
Vì chu vi của mảnh đất là 90m nên ta có phương trình:
\(2\cdot\left(x+y\right)=90\)
\(\Leftrightarrow x+y=45\)(1)
Diện tích ban đầu của mảnh đất là: \(xy\left(m^2\right)\)
Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 2m thì diện tích giảm 140m2 nên ta có phương trình:
\(\left(x-5\right)\left(y-2\right)=xy-140\)
\(\Leftrightarrow xy-2x-5y+10-xy+140=0\)
\(\Leftrightarrow-2x-5y+150=0\)
\(\Leftrightarrow-2x-5y=-150\)
\(\Leftrightarrow2x+5y=150\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=45\\2x+5y=150\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y=90\\2x+5y=150\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-60\\x+y=45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=20\\x=45-y=45-20=25\end{matrix}\right.\)(thỏa ĐK)
Diện tích mảnh đất là:
\(x\cdot y=25\cdot20=500\left(m^2\right)\)
Vậy: Diện tích mảnh đất là 500m2
Bài 12:
Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))
Vì chu vi của mảnh đất là 80m nên ta có phương trình:
\(2\cdot\left(x+y\right)=80\)
\(\Leftrightarrow x+y=40\)(3)
Diện tích ban đầu của mảnh đất là:
\(xy\left(m^2\right)\)
Vì khi tăng chiều dài thêm 3m và tăng chiều rộng thêm 5m thì diện tích tăng thêm 195m2 nên ta có phương trình:
\(\left(x+3\right)\left(y+5\right)=xy+195\)
\(\Leftrightarrow xy+5x+3y+15-xy-195=0\)
\(\Leftrightarrow5x+3y-180=0\)
\(\Leftrightarrow5x+3y=180\)(4)
Từ (3) và (4) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=40\\5x+3y=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+5y=200\\5x+3y=180\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=20\\x+y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40-y=40-10=30\\y=10\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài của mảnh đất là 30m
Chiều rộng của mảnh đất là 10m

Gọi chiều dài của mảnh đất hcn là x(m),chiều rộng của mảnh đất hcn là y(m) (0<y<x).
Diện tích ban đầu của mảnh đất đó là : xy(m2).
Sau khi tăng chiều dài 2m và chiều rộng thêm 5m thì diện tích mới của mản đất đó là:(x+2)(y=5) (m2). (1)
Vì nếu tăng chiều dài 2m và chiều rộng thêm 5m thì diện tích tăng thêm 120m2,nên ta có pt:(x+2)(y=5) -xy=120.
Sau khi giảm chiều dài 3m và chiều rộng đi 2m thì diện tích của mảnh đất đó là: (x-3)(y-2) (m2).
Vì Nếu giảm chiều dài 3m và chiều rộng đi 2m thì diện tích giảm 60m2,nên ta có pt : xy-(x-3)(y-2)=60. (2)
- Còn lại hệ pt tự giải nốt nhé

Gọi:
- \(x\) là chiều dài ban đầu (m)
- \(y\) là chiều rộng ban đầu (m)
Theo đề bài:
- Chu vi hình chữ nhật là 64m, tức:
\(2 \left(\right. x + y \left.\right) = 64 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x + y = 32\)
- Khi tăng chiều dài thêm 2m và chiều rộng thêm 3m, diện tích tăng thêm 88 m². Diện tích ban đầu là \(x y\), diện tích sau tăng là \(\left(\right. x + 2 \left.\right) \left(\right. y + 3 \left.\right)\). Do đó:
\(\left(\right. x + 2 \left.\right) \left(\right. y + 3 \left.\right) - x y = 88\)
Mở rộng và đơn giản:
\(x y + 3 x + 2 y + 6 - x y = 88\)\(3 x + 2 y + 6 = 88\)\(3 x + 2 y = 82\)
Hệ phương trình:
\(\left{\right. x + y = 32 \\ 3 x + 2 y = 82\)
Giải hệ:
Từ phương trình thứ nhất:
\(y = 32 - x\)
Thay vào phương trình thứ hai:
\(3 x + 2 \left(\right. 32 - x \left.\right) = 82\)\(3 x + 64 - 2 x = 82\)\(x + 64 = 82\)\(x = 18\)
Thay \(x = 18\) vào:
\(y = 32 - 18 = 14\)
Kết luận:
Chiều dài mảnh vườn là \(\boxed{18 \&\text{nbsp};\text{m}}\), chiều rộng là \(\boxed{14 \&\text{nbsp};\text{m}}\).
Tk
Nửa chu vi mảnh vườn là 64:2=32(m)
Gọi chiều dài và chiều rộng của mảnh vườn lần lượt là x(m) và y(m)
(Điều kiện: x>y>0)
Nửa chu vi mảnh vườn là 32m nên x+y=32(1)
Nếu tăng chiều dài thêm 2m và tăng chiều rộng thêm 3m thì diện tích tăng thêm \(88m^2\)
nên ta có: (x+2)(y+3)=xy+88
=>xy+3x+2y+6=xy+88
=>3x+2y=82(2)
Từ (1),(2) ta có hệ phương trình:
\(\begin{cases}x+y=32\\ 3x+2y=82\end{cases}\Rightarrow\begin{cases}3x+3y=96\\ 3x+2y=82\end{cases}\)
=>\(\begin{cases}3x+3y-3x-2y=96-82\\ x+y=32\end{cases}\Rightarrow\begin{cases}y=14\\ x=32-14=18\end{cases}\) (nhận)
Vậy: chiều dài và chiều rộng của mảnh vườn lần lượt là 18(m) và 14(m)

Gọi chiều rộng là x
Chiều dài là 60-x
Theo đề, ta có: (63-x)(x+5)=x(60-x)+265
\(\Leftrightarrow63x+315-x^2-5x=60x-x^2+265\)
=>58x+315=60x+265
=>-2x=-50
=>x=25
Vậy: Chiều rộng là 25m
Chiều dài là 35m

gọi chiều dài thửa ruộng là x(m) chiều rộng là y(m) ( x,y>o)
diện tích thửa ruộng là x.y (m2)
nếu tăng chiều dài thêm 2 và tăng chiều rộng thêm 3 thì diện tích thửa ruộng lúc này là (x+2)(y+3)=100+xy
nếu cùng giảm cả chiều dài và chiều rộng là 2m thì diện tích lúc này là (x-2)(y-2)=68-xy
từ đó ta tìm được diện tích là 308m2

Này cậu :)))))
Gọi chiều dài ban đầu của mảnh đất là x ( m ) và chiều rộng của mảnh đát là y ( m )
( 40 < x < 80 ; 0 < y < 40 )
Chi vi là 160 nên ta có phương trình: x + y = 160 : 2 ( 1 )
Nếu tăng chiều rộng thêm 10 m và giảm chiều dài đi 10 m thì diện tích mảnh đất tăng thêm 100^2 nên ta có phương trình: \(\left(x-10\right)\left(y+10\right)=xy+100\) ( 2 )
Từ ( 1 ) và ( 2 ) ta có hệ phương trình:
\(\hept{\begin{cases}x+y=80\\\left(x-10\right)\left(y+10\right)=xy+100\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=50\\y=30\end{cases}}\) ( giải hệ tự giải lấy )
Vậy ............... P/s nếu vẫn chưa biết cách giải hệ thì ib tớ riêng tớ chỉ cho nha :P
Gọi chiều rộng và chiều dài của mảnh đất lần lượt là a(m) và b(m)
(Điều kiện: a>0 và b>0)
Nếu tăng mỗi chiều của mảnh đất thêm 4m thì diện tích tăng thêm 80m2 nên ta có:
(a+4)(b+4)=ab+80
=>ab+4a+4b+16=ab+80
=>4a+4b=64
=>a+b=16(1)
Nếu giảm chiều rộng 2m và tăng chiều dài 5m thì diện tích mảnh đất không đổi nên ta có:
(a-2)(b+5)=ab
=>ab+5a-2b-10=ab
=>5a-2b=10(2)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=16\\5a-2b=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a+2b=32\\5a-2b=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7a=42\\a+b=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=10\end{matrix}\right.\left(nhận\right)\)
Chu vi mảnh đất là \(\left(6+10\right)\cdot2=32\left(m\right)\)
Đặt: Độ dài chiều dài và rộng của mảnh vườn lần lượt là a và b (m; a>b>0)
=> Diện tích mảnh đất đó là ab (m2)
+) Nếu tăng mỗi chiều của mảnh đất đó thêm 4m thì diện tích mảnh đất đó tăng thêm 80m2
=> (a+4)(b+4)=ab+80 (m2)
=> ab+4a+4b+16=ab+80
=>4a+4b+16=80
=>4a+4b=64
=> 4(a+b)=64
=> a+b=16 (1)
+)Nếu giảm chiều rộng 2m và tăng chiều dài thêm 5m thì diện tích mảnh vườn không đổi
=> (a+5)(b-2)=ab(m2)
=>ab-2a+5b-10=ab
=>-2a+5b=10 (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=16\Rightarrow2\left(a+b\right)=2a+2b=32\\-2a+5b=10\end{matrix}\right.\)
\(2a+2b-2a+5b=7b=42\)
\(b=6\)
Thay b = 6 vào (1)
=> a + 6 = 16
=> a = 10
Có a>b>0 (do 10>6>0)
=> tmđk: a = 10 và b = 6
=> Độ dài của chiều dài và rộng lần lượt là 10m và 6m
=> Chu vi mảnh vườn đó là: (10+6).2=32(m)
Đ/S: 32m