K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác ABOC có

\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a: góc OBA+góc OCA=180 độ

=>OBAC nội tiếp

Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên AO là trung trực của BC

=>AO vuông góc BC

góc EBC=1/2*180=90 độ

=>EB vuông góc BC

=>AO//EB

b: Xét ΔMAD và ΔMBA co

góc AMD chung

góc MDA=góc MAB

=>ΔMAD đồng dạng với ΔMBA

2 tháng 6 2018

O A B C H D I K E F

b) Ta thấy (O) giao (I) tại 2 điểm B và D => BD vuông góc OI (tại K) => ^OKB=900.

Xét đường tròn (I) đường kính AB có H thuộc cung AB => AH vuông góc HB hay AH vuông góc BC (1) 

AB và AC là 2 tiếp tuyến của (O) => \(\Delta\)ABC cân tại A. Mà AO là phân giác ^BAC

=> AO vuông góc BC (2)

Từ (1) và (2) => A;H;O thẳng hàng => ^OHB=900.

Xét tứ giác BOHK: ^OKB=^OHB=900 => Tứ giác BOHK nội tiếp đường tròn đường kính OB

=> ^OKH = ^OBH. Lại có ^OBH=^OAB (Cùng phụ ^HBA) => ^OKH = ^OAB

Hay ^OKH = ^HAI. Mà ^OKH + ^KHI = 1800 nên ^HAI + ^KHI = 1800

=> Tứ giác AIKH nội tiếp đường tròn (đpcm).

b) Dễ thấy OI là trung trực của BD và OI cắt BD tại K => K là trung điểm của BD

\(\Delta\)ABC cân đỉnh A có đường phân giác AH => H là trung điểm BC

Từ đó suy ra HK là đường trung bình của \(\Delta\)BDC

=> HK//CD => ^HKD + ^CDK = 1800 (3). Đồng thời \(\frac{HK}{CD}=\frac{1}{2}\)

Tương tự KI là đường trg bình của \(\Delta\)BAD => KI//AD => ^DKI + ^ADK = 1800 (4) Và \(\frac{IK}{AD}=\frac{1}{2}\)

Cộng (3) với (4) => ^KHD + ^KDI + ^CDK + ^ ADK = 3600

<=> ^HKI = 3600 - (^CDK + ^ADK) => ^HKI = ^CDA.

Xét \(\Delta\)HKI và \(\Delta\)CDA: ^HKI=^CDA; \(\frac{HK}{CD}=\frac{IK}{AD}=\frac{1}{2}\)=> \(\Delta\)HKI ~ \(\Delta\)CDA (c.g.c)

=> ^HIK = ^CAD. Mặt khác: ^CAD = ^DBE (Cùng chắn cung DE) => ^HIK=^DBE.

Mà tứ giác AIKH nội tiếp đường tròn => ^HIK=^HAK = >^DBE=^HAK hay ^KBF=^FAK

=> Tứ giác BKFA nội tiếp đường tròn => Đường tròn ngoại tiếp tam giác ABF đi qua điểm K (đpcm).

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu

16 tháng 8 2021

( mấy cái cơ bản thì tự viết nhé )

a) góc MAO và góc MBO= 90 độ

xét tứ giác MAOB có góc MAO+MBO=180 độ

=> MAOB nội tiếp

b) Xét (O) có EB là tiếp tuyến của (O)

\(\Rightarrow\widehat{EBD}=\widehat{EAB}\left(=\frac{1}{2}sđ\widebat{DB}\right)\)

Xét tam giác EDB và tam giác EBA có:

\(\hept{\begin{cases}\widehat{AEB}chung\\\widehat{EBD}=\widehat{EAB}\left(cmt\right)\end{cases}\Rightarrow\Delta EDB~\Delta EBA\left(g-g\right)}\)

\(\Rightarrow\frac{BE}{DE}=\frac{AE}{BE}\)

\(\Rightarrow BE^2=AE.DE\left(1\right)\)

Vì \(AC//MB\Rightarrow\widehat{ACM}=\widehat{DME}\left(SLT\right)\)

Ta có: \(\hept{\begin{cases}\widehat{ACM}=\widehat{ABD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\\\widehat{ABD}=\widehat{MAD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\end{cases}\Rightarrow\widehat{ACM}=\widehat{MAD}}\)

\(\Rightarrow\widehat{DME}=\widehat{MAD}\)

Xét tam giác EMD và tam giác EAM có: 

\(\hept{\begin{cases}\widehat{DME}=\widehat{MAD}\\\widehat{AME}chung\end{cases}}\Rightarrow\Delta EMD~\Delta EAM\left(g-g\right)\)

\(\Rightarrow\frac{ME}{DE}=\frac{AE}{ME}\)

\(\Rightarrow ME^2=DE.AE\left(2\right)\)

Từ (1) và (2) \(\Rightarrow BE=ME\left(đpcm\right)\)

c)  mai nốt :V

16 tháng 8 2021

c) El à trung điểm MB;H là trung điểm AB

-> EH là đường trung bình tam giác MAB

=> EH// MA

=> góc EHB= góc MAB ( đồng vị )

Mà góc MAB = góc AKB ( = 1/2 số đo cung AB )

=> góc EHB= góc AKB

mà góc EHB+ góc IHB = 180 độ

=> góc AKB + góc IHB = 180 độ

=> BHIK nội tiếp

=> góc BHK= BIK  mà góc BHK= 90 độ

=> góc BIK= 90 độ

=> AK vuông góc với BI 

6 tháng 4 2017

1. có góc B cộng  góc C bằng 180 độ ( tiế vậy nó nội tip tuyến ĐT) vậy nó nội tiếp

2. xét 2 tam giác ABE và tam giác AFB chứng minh nó đồng dạng (g,g), vì góc A chung, góc F bằng góc ABE = 1/2 Sđ cung BE. rồi lập tì số đồng dạng là được.

3. Chưa làm được. nếu bạn làm được rối thông tin cho mình nhé. cảm ơn

a: ΔODE cân tại O

mà OM là trung tuyến

nên OM vuông góc DE

=>góc OMA=90 độ=góc OCA=góc OBA

=>O,A,B,M,C cùng thuộc 1 đường tròn

b: Xét ΔBSC và ΔCSD có

góc SBC=góc SCD

góc S chung

=>ΔBSC đồng dạng với ΔCSD

=>SB/CS=SC/SD

=>CS^2=SB*SD

góc DAS=gócEBD

=>góc DAS=góc ABD

=>ΔSAD đồng dạng với ΔSBA

=>SA/SB=SD/SA

=>SA^2=SB*SD=SC^2

=>SA=SC
c; BE//AC

=>EH/SA=BH/SC=HJ/JS

mà SA=SC
nênHB=EH

=>H,O,C thẳng hàng

a: ΔODE cân tại O

mà OM là trung tuyến

nên OM vuông góc DE

=>góc OMA=90 độ=góc OCA=góc OBA

=>O,A,B,M,C cùng thuộc 1 đường tròn

b: Xét ΔBSC và ΔCSD có

góc SBC=góc SCD

góc S chung

=>ΔBSC đồng dạng với ΔCSD

=>SB/CS=SC/SD

=>CS^2=SB*SD

góc DAS=gócEBD

=>góc DAS=góc ABD

=>ΔSAD đồng dạng với ΔSBA

=>SA/SB=SD/SA

=>SA^2=SB*SD=SC^2

=>SA=SC
c; BE//AC

=>EH/SA=BH/SC=HJ/JS

mà SA=SC
nênHB=EH

=>H,O,C thẳng hàng