Trong mặt phẳng tọa độ, cho A(-3;4), B(2,-5), và đườn thẳng (D) có phương trình: 2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2021

\(\overrightarrow{AB}=\left(2,6\right)\)

\(\Rightarrow\overrightarrow{n}=\left(-6,2\right)\)

Đường thằng đi qua A(2,4) , nhận vecto \(\overrightarrow{n}\) làm vecto chỉ phương có PT : 

\(\left(-6\right)\cdot\left(x-2\right)+2\cdot\left(y-4\right)=0\)

\(\Rightarrow-6x+2y+4=0\)

31 tháng 5 2021

1.

\(\left(C\right):x^2+y^2-2x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)

Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)

Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)

Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)

\(\Leftrightarrow m=-1\pm\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)

31 tháng 5 2021

2.

Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)

\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)

\(\Leftrightarrow m=-1\pm2\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)

(3):

a: =>căn 2x-3=x-3

=>x>=3 và x^2-6x+9=2x-3

=>x>=3 và x^2-8x+12=0

=>x=6

b: =>x>=-1 và 2x^2+mx-3=x^2+2x+1

=>x>=-1 và x^2+(m-2)x-4=0

=>với mọi m thì pt luôn có hai nghiệm phân biệt lớn hơn -1 vì a*c<0

a: vecto AB=(6;-4)

PTTS là:

x=-6+6t và y=3-4t

b: Vì (d) vuông góc AB nên (d) có VTPT là (3;-2)

Phương trình(d) là:

3(x-3)+(-2)(y-2)=0

=>3x-9-2y+4=0

=>3x-2y-5=0

a: (Δ)//d nên Δ: -x+2y+c=0

=>VTPT là (-1;2)

=>VTCP là (2;1)

PTTS là:
x=3+2t và y=1+t

b: (d): -x+2y+1=0

=>Δ: 2x+y+c=0

Thay x=4 và y=-2 vào Δ, ta được:

c+8-2=0

=>c=-6