Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)
Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).
b) 3x = 2y
=> x/2 = y/3 (1)
7y = 5z
=> y/5 = z/7 (2)
Từ (1) và (2), có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x/10 = 2 => x = 2 x 10 =20
y/15 = 2 => y = 2 x 15 = 30
z/21 = 2 => z = 2 x 21 = 42
Mình làm một câu ví dụ thui nha
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{5x}{50}=2\Rightarrow x=20\)
\(\frac{y}{6}=2\Rightarrow y=12\)
\(\frac{2z}{42}=2\Rightarrow x=42\)
mấy câu khác thì tương tự
tíc mình nha bạn
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
a)ta có: x/10 = y/6 = z/21=>5x/50=y/6=2z/42
áp dụng tính chất của dãy tỉ số = nhau ta có:
5x/50=y/6=2z/42=5x+y-2z/50+6-42=28/14=2
suy ra: 5x/50=2=>5x=100=>x=20
y/6=2=>y=12
2z/42=2=>84=>z=42
b)3x = 2y ; 7y = 5z
=>x/2=y/3;y/5=z/7
=>x/10=y/15;y/15=z/21
=>x/10=y/15=z/21
áp dụng tính chất của dãy tỉ số = nhau ta có:
x/10=y/15=z/21=x-y+z/10-15+21=32/16=2
suy ra :
x/10=2=>x=20
y/15=2=>y=30
z/21=2=>z=42
c) x/3 = y/4 ; y/3 = z/5
=>x/9=y/12;y/12=z/20
=>x/9=y/12=z/20
=>2x/18=3y/36=z/20
áp dụng tính chất của dãy tỉ số = nhau ta có:
2x/18=3y/36=z/20=2x-3y+z/18-36+20=6/2=3
suy ra
2x/18=3=>2x=54=>x=27
3y/36=3=>3y=108=>y=36
z/20=3=>z=60
d)2x/3 = 3y/4 = 4z/5
=>12x/18=12y/16=12z/15
áp dụng tính chất của dãy tỉ số = nhau ta có:
12x/18=12y/16=12z/15=12x+12y+12z/18+16+15=12(x+y+z)/49=49/49=12
suy ra
12x/18=12=>12x=216=>x=18
12y/16=12=>12y=192=>y=16
12z/15=12=>12z=180=>z=15
d)đặt x-1/2=y-2/3=z-3/4=k
=>x=2k+1
y=3k+2
z=4k+3
thay x=2k+1;y=3k+2;z=4k+3 vào 2x+3x-z=50 ta được:
2(2k+1)+3(3k+2)-(4k+3)=50
4k+2+9k+6-4k-3=50
9k+5=50
9k=45
k=5
=>x=2k+1=2.5+1=11
y=3k+2=3.5+2=17
z=4k+3=4.5+3=23
b) 3x = 2y
=> x/2 = y/3 (1)
7y = 5z
=> y/5 = z/7 (2)
Từ (1) và (2), có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x/10 = 2 => x = 2 x 10 =20
y/15 = 2 => y = 2 x 15 = 30
z/21 = 2 => z = 2 x 21 = 42
mình làm câu b nhé
2x-2/4=3y-6/9=z-3/4
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
=2x-2+3y-6-z-3/4+9-5
=(2x+3y-z)-(2+6-3)/9
=50-5/9=45/9=5
mình gợi ý tới đây thui , còn lại bạn làm tiếp nhé
\(a\)) Đặt \(6x=10y=15z=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{k}{6}\\y=\dfrac{k}{10}\\z=\dfrac{k}{15}\end{matrix}\right.\) \(\Rightarrow\dfrac{k}{6}+\dfrac{k}{10}+\dfrac{k}{15}=90\)
\(\Leftrightarrow\dfrac{k}{3}=90\Leftrightarrow k=270\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{270}{6}=45\\y=\dfrac{270}{10}=27\\z=\dfrac{270}{15}=18\end{matrix}\right.\)
Vậy \(x=45;y=27;z=18\)
\(b\)) Đặt \(9x=3y=2z=q\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{q}{9}\\y=\dfrac{q}{3}\\z=\dfrac{q}{2}\end{matrix}\right.\) \(\Rightarrow\dfrac{q}{9}-\dfrac{q}{3}+\dfrac{q}{2}=50\)
\(\Rightarrow\dfrac{5q}{18}=50\) \(\Leftrightarrow q=180\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{180}{9}=20\\y=\dfrac{180}{3}=60\\z=\dfrac{180}{2}=90\end{matrix}\right.\)
Vậy \(x=20;y=60;z=90\)
\(c\)) Đặt \(2x=3y=-2z=r\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{r}{2}\\y=\dfrac{r}{3}\\z=-\dfrac{r}{2}\end{matrix}\right.\) \(\Rightarrow2\cdot\dfrac{r}{2}-3\cdot\dfrac{r}{3}+4\cdot\left(-\dfrac{r}{2}\right)=48\)
\(\Leftrightarrow-2r=48\) \(\Leftrightarrow r=-24\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-24}{2}=-12\\y=\dfrac{-24}{3}=-8\\z=-\dfrac{-24}{2}=12\end{matrix}\right.\)
Vậy \(x=-12;y=-8;z=12\)
\(d\)) Đặt \(\dfrac{x+1}{3}=\dfrac{y+2}{4}=\dfrac{z+3}{5}=u\)
\(\Rightarrow\left\{{}\begin{matrix}x=3u-1\\y=4u-2\\z=5u-3\end{matrix}\right.\) \(\Rightarrow3u-1+4u-2+5u-3=30\)
\(\Leftrightarrow12u=36\) \(\Leftrightarrow u=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\cdot3-1=8\\y=4\cdot3-2=10\\z=5\cdot3-3=12\end{matrix}\right.\)
Vậy \(x=8;y=10;z=12\)
\(e\)) Đặt \(\dfrac{x-1}{3}=\dfrac{x-2}{4}=\dfrac{z-3}{5}=p\)
\(\Rightarrow\left\{{}\begin{matrix}x=3p+1\\y=4p+2\\z=5p+3\end{matrix}\right.\) \(\Rightarrow3p+1+4p+2+5p+3=30\)
\(\Leftrightarrow12p=24\) \(\Leftrightarrow p=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\cdot2+1=7\\y=4\cdot2+2=10\\z=5\cdot2+3=13\end{matrix}\right.\)
Vậy \(x=7;y=10;z=13\)
\(g\)) \(\left\{{}\begin{matrix}\dfrac{x}{4}=\dfrac{y}{3}\\x:y=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x:y=\dfrac{4}{3}\\x:y=12\end{matrix}\right.\) (Vô lí)
Vậy không có giá trị \(x,y\) thỏa mãn
\(h\)) Đặt \(-6x=-15y=10z=a\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{a}{6}\\y=-\dfrac{a}{15}\\z=\dfrac{a}{10}\end{matrix}\right.\) \(\Rightarrow\left(-\dfrac{a}{6}\right)\cdot\left(-\dfrac{a}{15}\right)\cdot\dfrac{a}{10}=240\)
\(\Leftrightarrow\dfrac{a^3}{900}=240\) \(\Leftrightarrow a^3=216000\) \(\Leftrightarrow a=60\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{60}{6}=-10\\y=-\dfrac{60}{15}=-4\\z=\dfrac{60}{10}=6\end{matrix}\right.\)
Vậy \(x=-10;y=-4;z=6\)
\(i\)) Đặt \(-18x=-12y=24z=s\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{s}{18}\\y=-\dfrac{s}{12}\\z=\dfrac{s}{24}\end{matrix}\right.\) \(\Rightarrow\left(-\dfrac{s}{18}\right)\cdot\left(-\dfrac{s}{12}\right)\cdot\dfrac{s}{24}=576\)
\(\Leftrightarrow\dfrac{s^3}{5184}=576\) \(\Leftrightarrow s^3=2985984\) \(\Leftrightarrow s=144\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{144}{18}=-8\\y=-\dfrac{144}{12}=-12\\z=\dfrac{144}{24}=6\end{matrix}\right.\)
Vậy \(x=-8;y=-12;z=6\)
\(k\)) \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{2}=\dfrac{z}{5}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2y}{3}\\z=\dfrac{5y}{2}\end{matrix}\right.\)\(\Rightarrow\dfrac{2y}{3}+y+\dfrac{5y}{2}=50\)
\(\Leftrightarrow\dfrac{25y}{6}=50\) \(\Leftrightarrow y=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2\cdot12}{3}=8\\z=\dfrac{5\cdot12}{2}=30\end{matrix}\right.\)
Vậy \(x=8;y=12;z=30\)
\(l\)) \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\2y=3z\end{matrix}\right.\) \(\Rightarrow x=z=\dfrac{2y}{3}\)\(\Rightarrow\dfrac{2y}{3}+y+\dfrac{2y}{3}=49\)
\(\Leftrightarrow\dfrac{7y}{3}=49\) \(\Leftrightarrow y=21\)
\(\Rightarrow x=z=\dfrac{2\cdot21}{3}=14\)
Vậy \(x=14;y=21;z=14\).