Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 1/1x2 + 1/2x3 + 1/3x4 ...... +1/9x10
= 1-1/2+1/2-1/3+1/3-1/4+........+1/9-1/10
=1-1/10=9/10
đặt A=1/1 x 1/2 + 1/2 x 1/3 + 1/3 + 1/4 + .......... + 1/9 x 1/10
\(A=\frac{1}{1}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{3}+...+\frac{1}{9}\cdot\frac{1}{10}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
đặt B=2/1 x 2 + 2/2 x 3 + 2/3 x4 + .............. + 2/98 x 99 + 2/99 x 100
\(B=2\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2\left(1-\frac{1}{100}\right)\)
\(=2\times\frac{99}{100}\)
\(=\frac{99}{50}\)
M = \(\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+...+\dfrac{1}{99x100}\)
M = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
M = \(1-\dfrac{1}{100}\)
M = \(\dfrac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
học tốt nha
\(M=1\times\dfrac{1}{2}+\dfrac{1}{2}\times\dfrac{1}{3}+\dfrac{1}{3}\times\dfrac{1}{4}+...+\dfrac{1}{99}\times\dfrac{1}{100}\)
\(M=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(M=1-\dfrac{1}{100}\)
\(M=\dfrac{99}{100}\)
Làm lại.
Giải:
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}...\frac{99}{100}\)
\(=\frac{1\times2\times3\times4\times...\times99}{2\times3\times4\times5\times6\times...\times100}\)
\(=\frac{1}{100}\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}...\frac{99}{100}\)
\(=\frac{1.2.3.4...99}{2.3.4.5.6...100}\)
\(=\frac{1}{100}\)
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{99}\right)\times\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{98}{99}\times\dfrac{99}{100}\)
\(=\dfrac{1\times2\times3\times...\times98\times99}{2\times3\times4\times...\times99\times100}=\dfrac{1}{100}\)
(1 - 1/2) × (1 - 1/3) × (1 - 1/4) × ... × (1 - 1/99) × (1 - 1/100)
= 1/2 × 2/3 × 3/4 × ... × 98/99 × 99/100
= 1/100
\(1\frac{1}{2}\times1\frac{1}{3}\times1\frac{1}{4}\times...\times1\frac{1}{100}\)
\(=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times...\times\frac{101}{100}\)
\(=\frac{3\times4\times5\times...\times101}{2\times3\times4\times...\times100}\)
\(=\frac{101}{2}\)
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{99}\right)\times\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\times...\times\dfrac{98}{99}\times\dfrac{99}{100}\)
\(=\dfrac{1\times2\times3\times4\times...\times99}{2\times3\times4\times...\times99\times100}\)
\(=\dfrac{1}{100}\)
1/100