Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, C/m : a^3 + b^3 + c^3 ≥ a^2.căn (bc) + b^2.căn (ac) + c^2.căn (ab)
Ta có : 2( a^3 + b^3 + c^3 ) = ( a^3 + b^3 + c^3 ) + ( a^3 + b^3 + c^3 )
≥ 3abc + a^3 + b^3 + c^3 ( BĐT Côsi )
= a^3 + abc + b^3 + abc + c^3 + abc ≥ 2.a^2.căn (bc) + 2.b^2.căn (ac) + 2.c^2.căn (ab) ( BĐT Côsi )
=> a^3 + b^3 + c^3 ≥ a^2.căn (bc) + b^2.căn (ac) + c^2.căn (ab)
Dấu " = " xảy ra khi a = b = c.
2, C/m : (a^2 + b^2 + c^2)(1/(a + b ) + 1/(b + c) +1/(a + c) ) ≥ (3/2)(a + b + c) ( 1 )
Áp dụng BĐT Bunhiacốpxki cho phân số ( :D ) ta được :
(a^2 + b^2 + c^2)(1/(a + b ) + 1/(b + c) +1/(a + c) ) ≥ (a^2 + b^2 + c^2).[(1+1+1)^2/(a+b+b+c+a+c)] = (a^2 + b^2 + c^2) . 9/[2.(a+b+c)]
(1) <=> (a^2 + b^2 + c^2) . 9/[2.(a+b+c)] ≥ (3/2)(a + b + c)
<=> 3(a^2 + b^2 + c^2) ≥ (a + b + c)^2
<=> a^2 + b^2 + c^2 ≥ ab + bc + ca.
BĐT cuối đúng nên => đpcm !
Dấu " = " xảy ra khi a = b = c.
3, C/m : a^4 + b^4 + c^4 ≥ (a + b + c)abc
Ta có : 2( a^4 + b^4 + c^4 ) = (a^4 + b^4 +c^4) + (a^4 + b^4 +c^4)
≥ ( a^2.b^2 + b^2.c^2 + c^2.a^2 ) + (a^4 + b^4 +c^4) = ( a^4 + b^2.c^2 ) + ( b^4 + c^2.a^2 ) + ( c^4 + a^2.b^2 )
≥ 2.a^2.bc + 2.b^2.ca + 2.c^2.ab ( BĐT Côsi )
= 2.abc(a + b + c)
Do đó a^4 + b^4 + c^4 ≥ (a + b + c)abc
Dấu " = " xảy ra khi a = b = c.
\(VT=\dfrac{a^4}{ab+ac}+\dfrac{b^4}{ab+bc}+\dfrac{c^4}{ac+bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\)
\(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath
Ta có:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\ge\dfrac{4}{\dfrac{a^2+1}{2}+b^2+1+\dfrac{c^2+1}{2}}=\dfrac{8}{b^2+7}\)
Tương tự
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}\ge\dfrac{8}{a^2+7}\)
\(\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge\dfrac{8}{c^2+7}\)
Cộng vế:
\(2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{8}{a^2+7}+\dfrac{8}{b^2+7}+\dfrac{8}{c^2+7}\)
\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{4}{a^2+7}+\dfrac{4}{b^2+7}+\dfrac{4}{c^2+7}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
- Nếu \(abc\ge0\Rightarrow a^2+b^2+c^2+abc\ge0\) dấu "=" xảy ra khi và chỉ khi \(a=b=c=0\)
- Nếu \(abc< 0\Rightarrow\) trong 3 số a; b; c có ít nhất 1 số âm
Không mất tính tổng quát, giả sử \(c< 0\Rightarrow ab>0\)
Mà \(\left\{{}\begin{matrix}-2\le c< 0\\ab>0\end{matrix}\right.\Leftrightarrow abc\ge-2ab\)
\(\Rightarrow a^2+b^2+c^2+abc\ge a^2+b^2-2ab+c^2=\left(a-b\right)^2+c^2>0\) (không thỏa mãn)
Vậy \(a=b=c=0\)
2:
a: =>a^2+2ab+b^2-2a^2-2b^2<=0
=>-(a^2-2ab+b^2)<=0
=>(a-b)^2>=0(luôn đúng)
b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0
=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
Sửa đề: 1+a^2;1+b^2;1+c^2
\(\dfrac{a}{\sqrt{1+a^2}}=\dfrac{a}{\sqrt{a^2+ab+c+ac}}=\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}< =\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)
\(\dfrac{b}{\sqrt{1+b^2}}< =\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{b+a}\right)\)
\(\dfrac{c}{\sqrt{1+c^2}}< =\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{a+b}\right)\)
=>\(A< =\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{2}\)