K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(2x-1\right)^2-3.\left(x+2\right)^2=4.\left(x-2\right)-5.\left(x-1\right)^2\)

\(\Leftrightarrow4x^2-4x+1-3\left(x^2+4x+4\right)=4x-8-5.\left(x^2-2x+1\right)\)

\(\Leftrightarrow4x^2-4x+1-3x^2-7x-12=4x-8-5x^2+10x-5\)

\(\Leftrightarrow x^2-11x-11=14x-13-5x^2\)

\(\Leftrightarrow6x^2-25x+2=0\)

Tự làm tiếp nha

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

6 tháng 8 2017

bạn giải tiếp giúp mk với được ko

6 tháng 8 2017

\(\Leftrightarrow x^2-2x+1-2x^2-4x-2=8+6x^2+12x+x^3-4+2x\)

\(\Leftrightarrow-x^2-6x-1=4+6x^2+14x+x^3\)

\(\Leftrightarrow0=5+7x^2+20x+x^3\)

tự giải nốt nha

21 tháng 7 2021

e) E >= 2021 

dấu = xảy ra khi x=1/2

g) G = |x-1|+ |2-x| >= |x-1+2-x|=1

Dấu = xảy ra khi (x-1)(2-x)>=0 <=> 1<=x<=2

h) H = |x-1|+|x-2| + |x-3| 

Ta có : |x-1| + |x-3| = |x-1| + |3-x| >= |x-1+3-x| = 2

|x-2| >=0

=> H>=2

Dấu = xảy ra khi (x-1)(3-x) >=0 ; x-2=0

<=> x=2

k) K = |x-1| + |2x-1| 

2K = |2x-2| + |2x-1| + |2x-1|

Ta có : |2x-2| + |2x-1|  = |2x-2| + |1-2x| >= |2x-2+1-2x|=1

|2x-1| >=0 

Dấu = xảy ra (2x-2)(1-2x) >=0; 2x-1=0

<=> x=1/2

21 tháng 7 2021

e)Vì \(\left|x-\dfrac{1}{2}\right|\ge0\forall x\)

\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|\ge0\forall x\\ \Rightarrow2\left|x-\dfrac{1}{2}\right|+2012\ge2012\forall x\)

Dấu "=" xảy ra khi x=\(\dfrac{1}{2}\)

Vậy...

b)G=|x-1|+ |2-x|\(\)

áp dụng bđt |a+b|+ |c+d|\(\ge\left|a+b+c+d\right|\forall x\)

\(\Rightarrow\)ta có |x-1|+ |2-x|\(\ge\) \(\left|x-1+2-x\right|\forall x\)

\(\Leftrightarrow\text{|x-1|+ |2-x| }\ge1\forall x\)

Dấu "=" xảy ra khi 1\(\le x\le2\) \(\forall x\)

Vậy...

h)H= |x-1|+|x-2| + |x-3| 

Ta có |x-1| + |x-3|         

=|x-1| + |3-x| ( trong giá trị tuyệt đối đổi dấu không cần đặt dấu trừ ở ngoài)       

 =>|x-1| + |3-x|\(\ge\left|x-1+3-x\right|\forall x\)          

<=>|x-1| + |3-x|\(\ge2\forall x\) (1)

Mà |x-2|\(\ge0\forall x\) (2)

Từ (1) và (2)=> ta có |x-1|+|x-2| + |x-3| \(\ge2\forall x\)

Dấu "=" xảy ra khi x-2=0

<=>x=2

Vậy...

k) K = |x-1| + |2x-1| 

2K = |2x-2| + |2x-1| + |2x-1|

Mà : |2x-2| + |2x-1| 

=|2x-2| + |1-2x|\(\ge\text{|2x-2+1-2x|}\) \(\forall x\)

Lại có |2x-1| \(\ge\)\(\forall x\)

Dấu "=" xảy ra 2x-1=0

<=>x=\(\dfrac{1}{2}\)

Vậy....

26 tháng 5 2021

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v

 

 

2 tháng 8 2017

c/ \(C'=\frac{1}{\frac{1}{3-2\sqrt{x}}}.\frac{1}{\frac{1}{\sqrt{3-2\sqrt{x}}}+1}=\frac{\sqrt{\left(3-2\sqrt{x}\right)^3}}{1+\sqrt{\left(3-2\sqrt{x}\right)}}\)

Đặt \(\sqrt{\left(3-2\sqrt{x}\right)}=a\)

\(\Rightarrow C'=\frac{a^3}{a+1}=a^2-a+1-\frac{1}{a+1}\)

Đế C' nguyên thì a + 1 là ước của 1

\(\Rightarrow a=0\)

\(\Rightarrow\sqrt{\left(3-2\sqrt{x}\right)}=0\)

\(\Rightarrow x=\frac{9}{4}\left(l\right)\)

Vậy không có x.

Không biết có nhầm chỗ nào không nữa. Lam biếng kiểm tra lại quá. You kiểm tra lại hộ nhé. Thanks

2 tháng 8 2017

a/ \(C=\left(\frac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\frac{5}{2\sqrt{x}-3}\right):\left(3+\frac{2}{1-\sqrt{x}}\right)\)

\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\frac{5}{2\sqrt{x}-3}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\left(\frac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\frac{5-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}.\frac{\sqrt{x}-1}{3\sqrt{x}-5}\)

\(=\frac{1}{3-2\sqrt{x}}\)

Câu b, c tự làm nhé

6 tháng 8 2017

1)x^4+x^2-6x+1=0>>>x^4+4x^2+4-3x^2-6x-3=0>>>(x^2+2)^2=3(x-1)^2.

>>Sau đó giải bt.

2)Đặt x^2-x+1=a;x+1=b thì:x^3+1=ab.

Pt:2a+5b^2+14ab=0(tự giải nha)