Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a /b = x/y = a +x / b+ y
=> x chia hết cho a ; y chia hết cho b
x/y = cx / cy thì a/b = a+ x / b+ y ( c là một chữ số bất kì )
để viết được dưới dạng só thập phân hữu hạn
khi mẫu của phân số tối giản chỉ có ước nguyên tố là 2 và 5
vậy \(P=\frac{x}{3.5.x}\) có dạng số thập phân hữu hạn thì \(\hept{\begin{cases}x⋮3\\y\in\left\{2,5\right\}\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\text{ hoặc }y=5\end{cases}}}\)
b. ta có :\(Q=\frac{15x}{2.7y}\Rightarrow\hept{\begin{cases}x⋮7\\y\in\left\{2,5\right\}\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=2\text{ hoặc y=5}\end{cases}}}\)
2.
\(\frac{3n+9}{n-4}\in Z\)
\(\Rightarrow3n+9⋮n-4\)
\(\Rightarrow3n-12+21⋮n-4\)
\(\Rightarrow3\times\left(n-4\right)+21⋮n-4\)
\(\Rightarrow21⋮n-4\)
\(\Rightarrow n-4\inƯ\left(21\right)\)
\(\Rightarrow n-4\in\left\{-7;-3;-1;1;3;7\right\}\)
\(\Rightarrow n\in\left\{-3;1;3;5;7;11\right\}\)
\(B=\frac{6n+5}{2n-1}\in Z\)
\(\Rightarrow6n+5⋮2n-1\)
\(\Rightarrow6n-3+8⋮2n-1\)
\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)
\(\Rightarrow8⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(8\right)\)
\(\Rightarrow2n-1\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow2n\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)
\(n\in Z\)
\(\Rightarrow n\in\left\{0;1\right\}\)