Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phương trình đường tròn mô tả ranh giới bên ngoài của vùng phủ sóng là: \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} = 9\)
b) Khoảng cách từ tâm I đến A là: \(IA = \sqrt {{{\left( { - 1 + 2} \right)}^2} + {{\left( {3 - 1} \right)}^2}} = \sqrt 5 \)
Do \(IA < 3\) nên điểm A nằm trong đường tròn ranh giới. Vậy nên người A có thể dịch vụ của trạm.
c) Khoảng cách từ tâm I đến B là: \(IB = \sqrt {{{\left( { - 3 + 2} \right)}^2} + {{\left( {4 - 1} \right)}^2}} = \sqrt {10} \)
Khoảng cách ngắn nhất theo đường chim bay để 1 người ở B di chuyển đến vùng phủ sóng là:
\(IB - R = \sqrt {10} - 3\left( {km} \right)\)
Chọn C
+ Gọi thời lượng công ty đặt quảng cáo trên sóng phát thanh là x (phút), trên truyền hình là y (phút). Chi phí cho việc này là:800.000x + 4.000.000y (đồng)
Mức chi này không được phép vượt qúa mức chi tối đa, tức:
800.000x+ 4.000.000y ≤ 16.000.000 hay x+ 5y-20 ≤ 0
Do các điều kiện đài phát thanh, truyền hình đưa ra, ta có:x ≥ 5 và y ≤ 4
Đồng thời do x; y là thời lượng nên x; y ≥ 0
Hiệu quả chung của quảng cáo là x+ 6y.
Bài toán trở thành: Xác định x; y sao cho:
M( x; y) = x + 6y đạt giá trị lớn nhất.
Với các điều kiện :
Trước tiên ta xác định miền nghiệm của hệ bất phương trình (*)
+Trong mặt phẳng tọa độ vẽ các đường thẳng
(d) : x + 5y - 20= 0 và (d’) ; x = 5; ( d’’) y = 4.
Khi đó miền nghiệm của hệ bất phương trình (*) là phần mặt phẳng(tam giác) không tô màu trên hình vẽ
Giá trị lớn nhất của M( x; y) =x+ 6y đạt tại một trong các điểm (5;3) ; ( 5;0) và ( 20; 0).
Ta có M (5; 3) = 23; M( 5; 0) = 5 và M( 20; 0) = 20.
+ Suy ra giá trị lớn nhất của M( x; y) bằng 23 tại ( 5; 3) tức là nếu đặt thời lượng quảng cáo trên sóng phát thanh là 5 phút và trên truyền hình là 3 phút thì sẽ đạt hiệu quả nhất.
Mệnh đề phủ định của P: P− “ π không là một số hữu tỉ”.
P là mệnh đề sai, P− là mệnh đề đúng.
Mệnh đề phủ định của Q: Q− “Tổng hai cạnh của một tam giác nhỏ hơn hoặc bằng cạnh thứ ba”.
Q là mệnh đề đúng, Q− là mệnh đề sai.
a) Mệnh đề “2020 chia hết cho 3” sai.
Mệnh đề phủ định của mệnh đề này là: “2020 không chia hết cho 3”
b) Mệnh đề “\(\pi < 3,15\)” đúng vì \(\pi \approx 3,141592654\)
Mệnh đề phủ định của mệnh đề này là: “\(\pi \ge 3,15\)”
c) Mệnh đề “Nước ta hiện nay có 5 thành phố trực thuộc trung ương” đúng (gồm Hà Nội, Đà Nẵng, Hải Phòng, Hồ Chí Minh và Cần Thơ)
Mệnh đề phủ định của mệnh đề này là: “Nước ta hiện nay không phải có 5 thành phố trực thuộc trung ương”
d) Mệnh đề “Tam giác có hai góc bằng \({45^o}\) là tam giác vuông cân” đúng.
Mệnh đề phủ định của mệnh đề này là: “Tam giác có hai góc bằng \({45^o}\) không phải là tam giác vuông cân”
Mệnh đề phủ định của Q là \(\overline Q \): “Châu Á không phải là châu lục có diện tích lớn nhất trên thế giới”.
Châu Á phần lớn nằm ở Bắc bán cầu, là châu lục có diện tích lớn nhất trên thế giới.
Do đó Q là mệnh đề đúng, \(\overline Q \) là mệnh đề sai.
Mệnh đề phủ định của các mệnh đề trên là:
a) “Paris không phải là thủ đô của nước Anh”
b) “23 không phải là số nguyên tố”
c) “2021 không chia hết cho 3”
d) “Phương trình \({x^2} - 3x + 4 = 0\) có nghiệm”.
+) Xét tính đúng sai:
a) “Paris là thủ đô của nước Anh” là mệnh đề sai.
“Paris không phải là thủ đô của nước Anh” là mệnh đề đúng.
b) “23 là số nguyên tố” là mệnh đề đúng.
“23 không phải là số nguyên tố” là mệnh đề sai.
c) “2021 chia hết cho 3” là mệnh đề sai.
“2021 không chia hết cho 3” là mệnh đề đúng.
d) “Phương trình \({x^2} - 3x + 4 = 0\) vô nghiệm” là mệnh đề đúng.
“Phương trình \({x^2} - 3x + 4 = 0\) có nghiệm” là mệnh đề sai.
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv⚽☺
tttuuuu==+0__$$$TTT❤