K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

Câu a bạn Nguyễn Thị Anh đã trả lời, mình trả lời câu c.

b) Câu này bạn ghi sai đề rồi!

c) Ta có: x/3 = y/4 => x/15 = y/20

                 y/5 = z/7 => y/20 = z/28

=> x/15 = y/20 = z/28

Áp dụng tính chất dãy tỉ số bằng nhau:

=> x/15 = y/20 = z/28 = 2x/30 = 3y/60 = 2x + 3y - z / 30 + 60 - 28 = 186/62 = 3

x/15 = 3 => x = 15 . 3 = 45

y/20 = 3 => y = 20 . 3 = 60

z/28 = 3 => z = 28 . 3 = 84

Vậy x = 45; y = 60; z = 84.

26 tháng 12 2016

Ta có: x/2=y/3=z/5=x-y-z/2-3-5=28/-6=-14/3

Do đó: x/2= -14/3 ->x= -14/3.2= -28/3

          y/3= -14/3 -.>y= -14/3.3= -14

          z/5= -14/3 ->z= -14/3.5= -70/3

Vậy x= -28/3 ; y= -14 ; z= -70/3
 

26 tháng 12 2016

Có: x/2 = y/3 => x/8= y/12     (1)

      y/4= z/5 => y/12 = z/15    (2)

    Từ (1) và (2) suy ra x/8= y/12= z/15

Aps dụng tính chất dãy tỉ số bằng nhau ta có 

x/8 = y/12 = z/15 = x-y-z/8-12-15  = 28/-19 = 

=> x= 28/-19 * 8 = ...

     y = 28/-19 * 12=...

     z = 28/-19 * 15=...

các bn tự tính kết quả nka !

20 tháng 12 2018

a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)\(x-y-z=-27\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)

Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)

          \(\frac{y}{14}=9\Rightarrow y=9.14=126\)

         \(\frac{z}{10}=9\Rightarrow z=9.10=90\)

Vậy:\(x=189;y=126\)\(z=90\)

20 tháng 12 2018

b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)\(x^2-2y^2+z^2=18\)

\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)\(x^2-2y^2+z^2=18\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)

\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)

Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)

21 tháng 11 2017

Vì x/2 = y/3 nên x/8=y/12 ( nhân hai vế với 1/4)    (1)

Vì y /4 =z/5 nên y/12 = z/15 ( nhân hai vế với 1/3)   (2)

Từ (1) và (2) suy ra x/8=y/12=z/15

Theo tính chất dãy tỉ số bằng nhau

x/8=y/12=z/15= (x-2y+3z)/(8-2.12+3.15) = 92/ 29

suy ra x = (92.8):29 ;   y = (92.12): 29; z = (92. 15) :29

21 tháng 11 2017

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1) và (2) => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{2y}{24}=\frac{3z}{45}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{2y}{24}=\frac{3z}{45}=\frac{x-2y+3z}{8-24+45}=\frac{92}{29}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{92}{29}\\\frac{y}{12}=\frac{92}{29}\\\frac{z}{15}=\frac{92}{29}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{736}{29}\\y=\frac{1104}{29}\\z=\frac{1380}{29}\end{cases}}}\)

21 tháng 11 2017

ST hình như sai rồi 8+24+45=77 mà

16 tháng 1 2021

a)=>x(y+2)-(y+2)=3

=>(y+2)(x-1)=3

Vì x,y thuộc Z nên y+2 và x-1 thuộc Ư(3)={+1;+3;-1;-3}

Sau đó thay lần lượt các cặp -1 với -3 và 1 với 3

11 tháng 3 2016

Xin lỗi! Mình mới học lớp 5 thôi à!

21 tháng 8 2015

\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\) và \(x+2=y+3=z+4\)

\(\Rightarrow x-\frac{1}{2}=0\) hoặc \(y+\frac{1}{3}=0\) hoặc \(z-2=0\)

\(\Rightarrow x=\frac{1}{2}\)            |         \(y=-\frac{1}{3}\)     |       \(z=2\)

Khi \(x=\frac{1}{2}\) thì:

\(\frac{1}{2}+2=\frac{5}{2}\)

\(y=\frac{5}{2}-3=-\frac{1}{2}\)

\(z=\frac{5}{2}-4=\frac{-3}{2}\)

Khi \(y=\frac{-1}{3}\)  thì:

\(\frac{-1}{3}+3=\frac{8}{3}\)

\(x=\frac{8}{3}-2=\frac{2}{3}\)

\(z=\frac{8}{3}-4=-\frac{4}{3}\)

Khi \(z=2\) thì:

\(2+4=6\)

\(x=6-2=4\)

\(y=6-3=3\)

Vậy (x,y,z) = \(\left(\frac{1}{2};-\frac{1}{2};-\frac{3}{2}\right)\)    ;    \(\left(\frac{2}{3};-\frac{1}{3};-\frac{4}{3}\right)\)  ;    \(\left(4;3;2\right)\)