Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d; 109 + 108 + 107 ⋮ 555
109 + 108 + 107
= 217 + 107
= 324 < 555
109 + 108 + 107 < 555 (không thể chia hết cho 555)
e; 817 - 279 - 913 ⋮ 45
817 - 279 -913
= 538 - 913
= - 375
3 + 7 + 5 = 15 không chia hết cho 9 n ên 375 không chia hết cho 45
a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)
b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)
c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)
1; 87 - 218 ⋮ 14
A = 87 - 218
A = - 131 (là số lẻ); 14 là số chẵn
Số lẻ không bao giờ chi hết cho số chẵn
2; 76 + 75 - 913 ⋮ 55
B = 76 + 75 - 913
B = 151 - 913
B = - 762 không chia hết cho 5 nên không chia hết cho 55
a, 810 - 89 - 88 = 88(82 - 8 - 1) = 88.55 chia hết cho 55
b, 76 + 75 - 74 = 74(72 + 7 - 1) = 74.55 = 74.5.11 chia hết cho 11
c, 817 - 279 - 913 = 328 - 327 - 326 = 324(34 - 33 - 32) = 324.45 chia hết cho 45
d, 109 + 108 + 107 = 106(103 + 102 + 10) = 106.1110 = 106.2.555 chia hết cho 555
(Nguyên lí Đi-rích-lê: Khi cho n+1 con thỏ vào n cái chuồng thì luôn có ít nhất một chuồng có nhiều hơn 2 con)
Áp dụng nguyên lí Đi-rích-lê ta có:Khi lấy một số chia cho 109 thì có thể sẽ đc các số dư là:0,1,2,3...,107,108 (109 số dư)
Vậy khi lấy 110 số chia cho 109 sẽ có ít nhất 2 số có cùng số dư khi chia cho 109.
Suy ra hiêu của chúng chia hết cho 109 (đpcm)
vì chia hết cho 45 suy ra chia hết cho 9và 5
mà 10 mũ 2003+125=1000000000.....(2003 chữ số 0)+125=100000000..125(2000 số 0) có tổng các chữ số chia hết cho 9 và có tận cùng là 5 chia hết 5
vì 543.799.11 có tận cùng là 7 và 58 có tận cùng là 8 nên sẽ có tận cùng là 5 chia hết cho 5
ta có : 10\(⋮\)5 \(\Rightarrow\)10\(^{2003}\)\(⋮\)5 mà 125\(⋮\)5 \(\Rightarrow\)10\(^{2003}\)+ 125\(⋮\)5
ta lại có 10\(^{2003}\)= 1000...0000 có tổng các chữ số bằng 1
\(\Rightarrow\)10\(^{2003}\)+ 125 có tổng các chữ số bằng 1 + 2 + 1 + 5 = 9 nên :
10\(^{2003}\)\(⋮\)9 mà ( 5 ; 9 ) = 1
\(\Rightarrow\)10\(^{2003}\)+ 125 \(⋮\)45
ta có 10^45+8=1000....0+8(45 số 0)
vì 100...0 chia hết cho 2 và 8 chia hết cho 2 nên 10^45+8 chia hết cho 2
lại có: 1+0+0+0+....+0+8(45số 0)=9
vì 9 chia hết cho 3và 9 nên 10^45 +8 chia hết cho 3 va 9
\(10^{2003}+125=10...000+125=10...125\left(\text{2000 chữ số 0}\right)\)chia hết cho 5 (1)
Mà 10...125 có tổng các chữ số là: 1+0+0+...+1+2+5 (2000 số 0) = 9 nên chia hết cho 9 (2)
và ƯCLN(5; 9)=1 (3)
Từ (1); (2) và (3) => 102003+125 chia hết cho 5.9 hay 102003+125 chia hết cho 45 (đpcm).
Ta có : 102003 + 125 chia hết cho 5 ( bạn tự làm được)
102003 + 125 chia hết cho 9 ( bạn tìm tổng các chữ số )
Do (5;9)=1 mà 102003 + 125 chia hết cho 9 và 5
=> 102003 + 125 chia hết cho 9.5=45
Vậy ...