K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2023

Ta có \(\dfrac{8n-3}{2n+1}\)

Vì n nguyên nên 8n - 3 và 2n + 1 nguyên 

Để \(\dfrac{8n-3}{2n+1}\) có giá trị nguyên

⇒ ( 8n - 3 ) ⋮ ( 2n + 1 )

⇒ ( 8n + 4 - 7 ) ⋮ ( 2n + 1 )

Mà ( 8n + 4 ) ⋮ ( 2n + 1 ) nên ( -7 ) ⋮ ( 2n + 1 )

Suy ra ( 2n + 1 ) ϵ Ư( -7 ) = { 1; -1; 7; -7 }

Lập bảng giá trị

2n + 1 1 -1 7 -7
n 0 -1 3 -4

Vậy n ϵ { -1; -4; 0; 3 }

15 tháng 11 2023

Vũ™©®×÷|

24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay

22 tháng 1

a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2

=> (n - 2) + 3 ⋮ n - 2

 Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2

=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}

 => n ∈ {-1;1;3;5}

b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1

=> (4n - 2) + 7 ⋮ 2n - 1

=> 2(2n - 1) + 7 ⋮ 2n - 1

 Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1

=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}

=> n ∈ {-3;0;1;4}

5 tháng 4 2023

Ta có: \(\dfrac{8n+19}{4n+1}=\dfrac{\left(8n+2\right)+17}{4n+1}=2+\dfrac{17}{4n+1}\) .Để \(\dfrac{8n+19}{4n+1}\) là số nguyên 

\(\Rightarrow2+\dfrac{17}{4n+1}\) phải là số nguyên \(\Rightarrow\dfrac{17}{4n+1}\) phải là số nguyên \(\Rightarrow4n+1\inƯ\left(17\right)\)\(=\left\{\pm1;\pm17\right\}\). Mà \(n\in N\) \(\Rightarrow\) \(4n+1>0\). Mặt khác, \(4n+1\) chia 4 dư 1 ( hay chia 4 dư \(-3\) ) \(\Rightarrow4n+1\in\left\{1;17\right\}\) .Từ đó ta có bảng :

  \(4n+1\)       1      17
      \(n\)       0       4

Vậy \(n\in\left\{0;4\right\}\) thì \(\dfrac{8n+19}{4n+1}\) là số nguyên.

10 tháng 5 2022

\(A=\dfrac{-\left(6-2n\right)+5}{3-n}=\dfrac{-2\left(3-n\right)+5}{3-n}=-2+\dfrac{5}{3-n}\)

Để A nguyên => 3-n = Ước của 5

\(\Rightarrow3-n=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{8;4;2;-2\right\}\)

19 tháng 3 2022

c) Để \(\dfrac{2n+5}{n-3}\) ∈ Z thì 2n+5⋮n-3

⇒ 2n-3+8⋮n-3

⇒ 8⋮n-3 ⇒ n-3∈Ư(8)

Ư(8)={...}

⇒n=...

19 tháng 3 2022

;-------------------------------; làm hết đeeeeeeeeeeeeeeeeeeeeeeeeeeeee

18 tháng 5 2016

a)\(A=\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)-5}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{5}{3n+1}\in Z\)

=>5 chia hết 3n+1

=>3n+1\(\in\){1,-1,5,-5}

=>n\(\in\){0;-2}vì x nguyên

phần kia tương tự