Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)
Nhận thầy 108 - 1 > 108 - 3
=> \(\frac{3}{10^8-1}< \frac{3}{10^8-3}\)
=> \(1+\frac{3}{10^8-1}< \frac{3}{10^8-3}+1\)
=> A < B
b) 17C = \(\frac{17\left(17^{203}+1\right)}{17^{204}+1}=\frac{17^{204}+1+16}{17^{204}+1}=1+\frac{16}{17^{204}+1}\)
17D = \(\frac{17\left(17^{202}+1\right)}{17^{203}+1}=\frac{17^{203}+1+16}{17^{203}+1}=1+\frac{16}{17^{203}+1}\)
Nhận thầy 17203 + 1 < 17204 + 1
=> \(\frac{16}{17^{203}+1}>\frac{16}{17^{204}+1}\)
=> \(\frac{16}{17^{203}+1}+1>\frac{16}{17^{204}+1}+1\Rightarrow17C>17D\Rightarrow C>D\)
\(\Leftrightarrow\frac{-2}{17}\le\frac{x}{17}\le\frac{2}{17}\Rightarrow x\in\left(-2;-1;0;1;2\right)\)
\(\Leftrightarrow\frac{-1}{24}\le\frac{x}{24}\le\frac{5}{24}\Rightarrow x\in\left(-1;0;1;2;3;4;5\right)\)
2 câu sau tự làm nha
\(-\frac{5}{17}+\frac{3}{17}\le\frac{x}{17}\le\frac{13}{17}+-\frac{11}{17}\)
\(\frac{-2}{17}\le\frac{x}{17}\le\frac{2}{17}\)
=> \(x\in\left\{-2;-1;0;1;2\right\}\)
rõ ràng ta chỉ cần so sánh giữa \(15^{30}+16^{12}+17^{50}-16^8\) và \(17^{30}+16^8+15^{50}-16^{12}\)
Áp dụng tính chất nếu a>b thì a-b>0 ta được:
\(15^{30}+16^{12}+17^{50}-16^8\)- \(\left(17^{30}+16^8+15^{50}-16^{12}\right)\)
= \(\left(17^{50}-17^{30}\right)+\left(16^{12}+16^{12}\right)+\left(15^{30}-15^{50}\right)-\left(16^8+16^8\right)\)
= \(\left(17^{50}-17^{30}\right)+\left(15^{30}-15^{50}\right)+2\left(16^{12}-16^8\right)\)
Vì 17^50 - 17^30 > l 15^30 - 15^50 l
nên \(\left(17^{50}-17^{30}\right)+\left(15^{30}-15^{50}\right)>0\)
=>\(15^{30}+16^{12}+17^{50}-16^8\)> \(17^{30}+16^8+15^{50}-16^{12}\)
=> Phân số thứ nhất > 1 và p/s thứ hai < 1
Lúc này bạn tự so sánh nha
17 - 8 = 9
17-8=9