![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 9.27n = 35
=> 32.33n = 35
=> 32 + 3n = 35
=> 2 + 3n = 5
=> 3n = 5 - 2
=> 3n = 3
=> n = 1
b) (23 : 4).2n = 4
=> 2.2n = 4
=> 2n = 4 : 2
=> 2n = 2
=> n = 1
c) 3-2.34 . 3n = 37
=> 3-2 + 4 + n = 37
=> 32 + n = 37
=> 2 + n = 7
=> n = 7 - 2 = 5
d) 2-1.2n + 4.2n = 9.25
=> (1/2 + 4).2n = 9.25
=> 9/2.2n = 9.25
=> 2n = 9.25 : 9/2
=> 2n = 26
=> n = 6
\(a,9\cdot27^n=3^5\)
\(\Rightarrow9\cdot27^n=243\)
\(\Rightarrow27^n=243:9=27\)
\(\Rightarrow27^n=27^1\)
\(\Rightarrow x=1\)
\(b,\left(2^3:4\right)\cdot2^n=4\)
\(\Rightarrow\left(8:4\right)\cdot2^n=4\)
\(\Rightarrow2\cdot2^n=4\)
\(\Rightarrow2^n=4:2=2\)
\(\Rightarrow n=1\)
\(c,3^{-2}\cdot3^4\cdot3^n=3^7\)
\(\Rightarrow3^2\cdot3^n=3^7\)
\(\Rightarrow3^n=3^7:3^2=3^5\)
\(\Rightarrow n=5\)
\(d,2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot32\)
\(\Rightarrow2^n\cdot\frac{9}{2}=288\)
\(\Rightarrow2^n=288:\frac{9}{2}=64\)
\(\Rightarrow2^n=2^6\)
\(\Rightarrow n=6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(10^{n+1}-6.10^n\)
\(=10^n.10-6.19^n\)
\(=10^n.\left(10-6\right)\)
\(=10^n.4\)
b) \(2^{n+3}+2^{n+2}-2^{n+1}+2^n\)
\(=2^n.2^3+2^n.2^2-2^n.2+2^n.1\)
\(=2^n.\left(2^3+2^2-2+1\right)\)
\(=2^n.11\)
c) \(90.10^k-10^{k+2}+10^{k+1}\)
\(=90.10^k-10^k.10^2+10^k.10\)
\(=10^k.\left(90-10^2+10\right)\)
\(=0\)
d) \(2,5.5^{n-3}.10+5^n-6.5^{n-1}\)
\(=\dfrac{2,5.5^n.10}{5^3}+5^n-\dfrac{6.5^n}{5}\)
\(=\dfrac{5^n}{5}+5^n-\dfrac{6.5^n}{5}\)
\(=\dfrac{5^n+5^{n+1}-6.5^n}{5}=\dfrac{5^n+5^n.5-6.5^n}{5}=\dfrac{5^n\left(1+5-6\right)}{5}=\dfrac{0}{5}=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}\)
\(A=\left(-1\right)^{2n+n+n+1}\)
\(A=\left(-1\right)^{4n+1}\)
\(B=\left(10000-1^2\right).\left(10000-2^2\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-100^2\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-10000\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...0\left(10000-1000^2\right)\)
\(B=0\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{5^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...0....\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=0\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-10^3\right)}\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-1000\right)}\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...0}\)
\(D=1999^0\)
\(D=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{2}.2^n+4.2^n=9.2^5\Rightarrow2^n\left(\frac{1}{2}+4\right)=288\Rightarrow2^n.\frac{9}{2}=288\Rightarrow2^{n-2}.9=288\Rightarrow2^{n-2}=32\)(dấu "=>" số 3 bn sửa thành 2n-1.9=288=>2n-1=32 nha)
=>2n-1=25=>n-1=5=>n=5+1=6
vậy......
~~~~~~~~~~~~~~~
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(9.27^n=3^5\Rightarrow3^2.\left(3^3\right)^n=3^5\)
\(\Rightarrow3^2.3^{3n}=3^5\Rightarrow3^{5n}=3^5\)
\(\Rightarrow5n=5\Rightarrow n=1\)
b)\(\left(2^3:4\right).2^n=4\Rightarrow\left(2^3:2^2\right).2^n=2^2\)
\(\Rightarrow2.2^n=2^2\Rightarrow2^{1+n}=2^2\)
\(\Rightarrow1+n=2\Rightarrow n=1\)
c)\(3^2.3^4.3^n=3^7\Rightarrow3^{6+n}=3^7\)
\(\Rightarrow6+n=7\Rightarrow n=1\)
d)\(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n\left(2^{-1}+4\right)=3^2.2^5\)
\(\Rightarrow\)\(2^n\left(\frac{1}{2}+4\right)=3^2.2^5\)
\(\Rightarrow\)\(2^n.\frac{3^2}{2}=3^2.2^5\)
\(\Rightarrow\)\(2^{n-1}.3^2=3^2.2^5\)
\(\Rightarrow n-1=5\Rightarrow n=6\)
e)\(243\ge3^n\ge9.3^2\)
\(\Rightarrow3^5\ge3^n\ge3^2.3^2\)
\(\Rightarrow3^5\ge3^n\ge3^4\)
\(\Rightarrow5\ge n\ge4\Rightarrow5;4\)
f)\(2^{n+3}.2^n=128\)
\(\Rightarrow2^{n+3+n}=2^7\)
\(\Rightarrow2^{2n+3}=2^7\)
\(\Rightarrow2n+3=7\Rightarrow2n=4\Rightarrow n=2\)
Hok tối
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3: Tìm x:
a. \(\left(2x-1\right)^4=81\)
\(\Rightarrow\left(2x-1\right)^4=3^4\)
=> 2x - 1 = 3
=> 2x = 4
=> x = 2
b. \(\left(x-2\right)^2=1\)
\(\Rightarrow\) \(\left(x-2\right)^2=1^2\)
=> x - 2 = 1
=> x = 3
c. \(x^{2000}=x\)
=> x = 1
d. \(\left(4x-3\right)^3=-125\)
\(\Rightarrow\left(4x-3\right)^3=\left(-5\right)^3\)
=> 4x - 3 = -5
=> 4x = -2
=> x = \(\dfrac{-1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
3n+2 + 3n + 2n+2 + 2n
= 3n . 32 + 3n + 2n . 22 + 2n
= 3n . ( 32 + 1 ) + 2n . ( 22 + 1 )
= 3n . 10 + 2n . 5
= 3n . 10 + 2n-1 . 10
= 10 . ( 3n + 2n-1 ) \(⋮\)10
Ta có :3n + 2 + 3 n + 2 n + 2 + 2 n
= 3n . 32 + 3n + 2n . 22 + 2n
= 3n . ( 32 + 1 ) + 2n . ( 22 + 1 )
= 3n . 10 + 2n . 5
= 3n . 10 + 2n-1 . 10
= 10 . ( 3n + 2n-1 ) \(⋮\)10 ( vì \(10⋮10\)) \(\left[đpcm\right]\)
![](https://rs.olm.vn/images/avt/0.png?1311)
8.2n +2n+1
=2n .(8+2)
=2n.10 chia hết cho 10
=> 8.2n +2n+1 chia hết cho 10
\(3^{n+3^{ }}-2.3^n+2^{n+5}-7.2^n\)
\(=3^n.\left(3^3-2\right)+2^n\left(2^5-7\right)\)
\(=3^n.25+2^n.25\)
=\(25.\left(3^n+2^n\right)\)chia hết cho 25
=>\(3^{n+3}-2.3^n+2^{n+5}-7.2^n\)
k cho mình nhé
\(3^{n+2}+3^{n+1}-3^n=891\)
\(3^n\times3^2+3^n\times3-3^n=891\)
\(3^n\times\left(9+3-1\right)=891\)
\(3^n\times11=891\)
\(3^n=891\div11\)
\(3^n=81\)
\(3^n=3^4\)
\(n=4\)
\(3^{n+2}+3^{n+1}-3^n=891\)
\(\Leftrightarrow3^n.3^2+3^n.3-3^n=891\)
\(\Leftrightarrow3^n\left(3^2+3-1\right)=891\)
\(\Leftrightarrow3^n.11=891\)
\(\Leftrightarrow3^n=81\)
\(\Rightarrow n=4\)