\(\dfrac{4}{3}+\dfrac{10}{9}+\dfrac{28}{27}+....+\dfrac{3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2023

\(A=\dfrac{4}{3}+\dfrac{10}{9}+\dfrac{28}{27}+....+\dfrac{\left(3^{99}+1\right)}{3^{99}}\)

\(A=\dfrac{4}{3}+\dfrac{10}{3^2}+\dfrac{28}{3^3}+...+\dfrac{\left(3^{99}+1\right)}{3^{99}}\)

\(A=\left(1+\dfrac{1}{3}\right)+\left(1+\dfrac{1}{3^2}\right)+\left(1+\dfrac{1}{3^3}\right)+...+\left(1+\dfrac{1}{3^{99}}\right)\)

\(A=\left(1+1+....+1\right)+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)

\(A=99+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)

Gọi \(\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)là T

\(T=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)

\(3T=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\)

\(3T-T=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)

\(2T=1-\dfrac{1}{3^{99}}\)

\(T=\left(1-\dfrac{1}{3^{99}}\right):2\)

\(T=\dfrac{1}{2}-\dfrac{1}{3^{99}\cdot2}\)

\(=>A=99+T=99+\dfrac{1}{2}-\dfrac{1}{3^{99}\cdot2}=99,5-\dfrac{1}{3^{99}\cdot2}< 100\)

Vậy A < 100

12 tháng 5 2023

cảm ơn bn

7 tháng 5 2017

vào mà tìm trong hoạt động của mk ,.... mk trả lời giống như này rồi đó , chứ ngồi mà chép lại thì mệt lắm !!!

15 tháng 5 2018

a) Giải

Đặt \(M=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\)

\(\Rightarrow A< A.M\)

hay \(A< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\right)\)

\(\Rightarrow A< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{98}{99}.\dfrac{99}{100}\)

\(\Leftrightarrow A< \dfrac{1.2.3.4.5.6...98.99}{2.3.4.5.6.7...99.100}\)

\(\Rightarrow A< \dfrac{1}{100}< \dfrac{1}{10}\)

Vậy \(A< \dfrac{1}{10}\)

13 tháng 5 2018

Đáp án nè:

Đặt A=\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{99}}\)

3A=\(\dfrac{1}{1}-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)

3A+A=\(\left(\dfrac{1}{1}-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\right)\)

4A=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}-\dfrac{1}{3^{100}}\)

4A bé hơn(sorry tớ không thấy dấu bé hơn)\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)

Đặt B=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)

3B=\(3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\)

4B=\(3-\dfrac{1}{3^{99}}\) bé hơn 3 \(\Rightarrow\)B bé hơn \(\dfrac{3}{4}\)

\(\Rightarrow\) 4A bé hơn\(\dfrac{3}{4}\Rightarrow\)A bé hơn \(\dfrac{3}{16}\)

Tick cho mình nha , ngồi đánh máy tính mỏi cả mắt lun

Chúc học tốtvui

AH
Akai Haruma
Giáo viên
25 tháng 1 2018

Lời giải:

\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(A+3A=1+\frac{1-2}{3}+\frac{-2+3}{3^2}+\frac{3-4}{3^3}+\frac{-4+5}{3^4}+...+\frac{99-100}{3^{99}}-\frac{100}{3^{100}}\)

\(4A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-.....+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(4A=(1-\frac{1}{3})+(\frac{1}{3^2}-\frac{1}{3^3})+...+(\frac{1}{3^{98}}-\frac{1}{3^{99}})-\frac{100}{3^{100}}\)

\(4A=\frac{2}{3}+\frac{2}{3^3}+...+\frac{2}{3^{99}}-\frac{100}{3^{100}}\)

\(2A=\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{50}{3^{100}}\)

\(18A=3+\frac{1}{3}+...+\frac{1}{3^{97}}-\frac{450}{3^{100}}\)

\(\Rightarrow 18A-2A=3-\frac{1}{3^{99}}-\frac{450}{3^{100}}+\frac{50}{3^{100}}=3-\frac{1}{3^{99}}-\frac{400}{3^{100}}\)

\(\Leftrightarrow 16A=3-\frac{1}{3^{99}}-\frac{400}{3^{100}}<3\Rightarrow A< \frac{3}{16}\)

2 tháng 5 2018

Đặt A=1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100

3A=1-2/3+3/3^2-4/3^3+...+99/3^98-100/3^99

3A+A=1-1/3+1/3^2-1/3^3+1/3^4-...+1/3^98-1/3^99-100/3^100

<1-1/3+1/3^2-1/3^3+1/3^4-...+1/3^98-1/3^99

Đặt S=1-1/3+1/3^2-1/3^3+1/3^4-...+1/3^98-1/3^99

3S=3-1+1/3-1/3^2+1/3^3-...-1/3^98

3S+S=3-1/3^99

S=(3-1/3^99) :4

S=3/4-1/4.3^99

\(\Rightarrow\)4A<3/4-1/4.3^99

\(\Rightarrow\)A<(3/4-1/4.3^99):4

\(\Rightarrow\)A<3/16-1/16.3^99<3/16

Vậy 1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16