Câu1: Cho DMNP vuông tại M, khi đó...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

Chọn C vì:

Ta có góc NMP = 50 độ, MPN = 60 độ

=> MNP = 70 độ

=> cạnh MP lớn nhất (theo quan hệ giữa góc và cạnh đối diện)

Loại được A

Mà góc MPN = 60 độ

=> Cạnh MN lớn thứ 2 (theo quan hệ giữa góc va cạnh đối diện)

Vậy Ta chọn C

21 tháng 1 2020

a) Có △MNP cân tại M

\(\Rightarrow\left\{{}\begin{matrix}MN=MP\\\widehat{MNP}=\widehat{MPN}\end{matrix}\right.\)

\(MH\perp NP\Rightarrow\widehat{MHN}=\widehat{MHP}=90^o\)

Xét △MHN và △MHP có:

\(\widehat{MHN}=\widehat{MHP}=90^o\\ MN=MP\\ \widehat{MNH}=\widehat{MPH}\)

\(\Rightarrow\text{△MHN = △MHP}\left(\text{cạnh huyền - góc nhọn}\right)\)

\(\Rightarrow HN=HP\) (2 cạnh tương ứng)

Mà H ∈ NP

\(\Rightarrow\) H là trung điểm của NP

b) \(HD\perp MN\Rightarrow\widehat{HDM}=\widehat{HDN}=90^o\\ HE\perp MP\Rightarrow\widehat{HEM}=\widehat{HEP}=90^o \)

Xét △HDN và △HEP có:

\(\widehat{HDN}=\widehat{HEP}=90^o\\ HN=HP\\ \widehat{DNH}=\widehat{EPH}\)

\(\Rightarrow\text{△HDN = △HEP}\left(\text{cạnh huyền - góc nhọn}\right)\)

\(\Rightarrow HD=HE\) (2 cạnh tương ứng)

Xét △HDE có HD = HE

\(\Rightarrow\) △HDE cân tại H

c) Có △HDN = △HEP

\(\Rightarrow DN=EP\) (2 cạnh tương ứng)

Mà MN = MP

\(\Rightarrow MD=ME\)

Xét △MDE có MD = ME

\(\Rightarrow\) △MDE cân tại M

\(\Rightarrow\widehat{MDE}=\frac{180^o-\widehat{NMP}}{2}\left(1\right)\)

Lại có: △MNP cân tại M

\(\Rightarrow\widehat{MNP}=\frac{180^o-\widehat{NMP}}{2}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\widehat{MDE}=\widehat{MNP}\)

Mà 2 góc ở vị trí đồng vị

\(\Rightarrow\) DE // NP (dấu hiệu nhận biết)

\(MH\perp NP\)

\(\Rightarrow DE\perp MH\) (quan hệ từ vuông góc đến song song)

a) Xét ΔMHN vuông tại H và ΔMHP vuông tại H có

MN=MP(do ΔMNP cân tại M)

MH là cạnh chung

Do đó: ΔMHN=ΔMHP(cạnh huyền-cạnh góc vuông)

⇒NH=HP(hai cạnh tương ứng)

mà H∈NP(gt)

nên H là trung điểm của NP(đpcm)

b)Xét ΔDHN vuông tại D và ΔEHP vuông tại E có

NH=HP(cmt)

\(\widehat{DNH}=\widehat{EPH}\)(hai góc ở đáy của ΔMNP cân tại M)

Do đó: ΔDNH=ΔEPH(cạnh huyền-góc nhọn)

⇒DH=EH(hai cạnh tương ứng)

Xét ΔHDE có DH=EH(cmt)

nên ΔHDE cân tại H(đpcm)

c)Gọi O là giao điểm của DE và MH

Ta có: \(\widehat{NDH}+\widehat{HDO}+\widehat{MDO}=180độ\)

\(\widehat{PEH}+\widehat{OEH}+\widehat{MEO}=180độ\)

\(\widehat{NDH}=\widehat{HEP}\)(=90 độ)

\(\widehat{HDO}=\widehat{OEH}\)(ΔHDE cân tại H)

nên \(\widehat{MDO}=\widehat{MEO}\)

hay \(\widehat{MDE}=\widehat{MED}\)(vì O∈ED)

Xét ΔMDE có \(\widehat{MDE}=\widehat{MED}\)(cmt)

nên ΔMDE cân tại M(định lí đảo của tam giác cân)

Ta có: ΔMHN=ΔMHP(cmt)

\(\Rightarrow\widehat{NMH}=\widehat{PMH}\)(hai góc tương ứng)

mà D∈MN(gt)

và E∈MP(gt) và O∈MH(theo cách gọi)

nên \(\widehat{DMO}=\widehat{EMO}\)

Xét ΔMDO và ΔMEO có

MD=ME(ΔMDE cân tại M)

\(\widehat{DMO}=\widehat{EMO}\)(cmt)

MO là cạnh chung

Do đó: ΔMDO=ΔMEO(c-g-c)

\(\widehat{MOD}=\widehat{MOE}\)(hai góc tương ứng)

\(\widehat{MOD}+\widehat{MOE}=180độ\)(do D,O,E thẳng hàng)

nên \(\widehat{MOD}=\widehat{MOE}=\frac{180độ}{2}=90độ\)

⇒MO⊥DE

hay MH⊥DE(đpcm)

7 tháng 3 2019

M P N I H K

Câu a, b em tự làm nhé nó khá đơn giản

câu c)

Áp dụng định lí pitago cho 2 tam giác vuông IKM và IKP ta có:

\(IK^2=MI^2-MK^2\)

\(IK^2=IP^2-KP^2\)

Cộng vế theo vế ta có;

\(2IK^2=MI^2-MK^2+IP^2-KP^2=\left(MI^2+IP^2\right)-MK^2-KP^2=MP^2-MK^2-KP^2\)( Áp dụng định lí pita go cho tam giác MIP)

Mà MP=MN

=> Điều p cm

7 tháng 12 2017

a/ Xét tam giác MNI và tam giác MPI có:

\(\hept{\begin{cases}MN=MP\left(gt\right)\\NI=IP\left(gt\right)\\MI:canhchung\end{cases}}\)

suy ra tam giác MNI = tam giác MPI

Vậy : ....... ( đpcm )

Nhớ k cho mình nhé! Thank you!!!

7 tháng 3 2019

Hỏi đáp Toán

a, Dễ dàng chứng minh được \(\Delta MNI=\Delta MPI\left(c.c.c\right)\) (phần này dễ, bạn tự chứng minh nha)

b, Theo chứng minh phần a, ta có:

\(\Delta MNI=\Delta MPI\Rightarrow\widehat{IMH}=\widehat{IMK}\)

Từ đây, ta suy ra \(\Delta MHI=\Delta MKI\left(ch-gn\right)\Rightarrow IH=IK\) (đpcm)

(Mình lằm tắt, bạn tự chứng minh đầy đủ nhé)

c, Do \(\Delta MPI\)\(\Delta MKI\) đều vuông và có chung \(\widehat{IMK}\) nên \(\widehat{MIK}=\widehat{PMI}\)

Từ đó, ta suy ra \(\Delta KIP\sim\Delta KMI\left(g.g\right)\Rightarrow\frac{IK}{MK}=\frac{KP}{IK}\)

\(\Rightarrow IK^2=MK\cdot KP\\ \Rightarrow2IK^2=2MK\cdot KP+MK^2-MK^2+KP^2-KP^2\\ \Rightarrow2IK^2=\left(MK+KP\right)^2-MK^2-KP^2\)

\(\Rightarrow2IK^2=MP^2-MK^2-KP^2\) (đpcm)

Chúc bạn học tốt nhaok.

Bài 1: Trên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB. Tia phân giác của các góc xOy cắt AB ở C. Chứng minh rằng: C là trung điểm của AB Bài 2: Cho tam giác ABC có Aˆ=900A^=900, M là trung điểm của AC. Trên tia đối của tia MB lấy điểm K sao cho MK = MB. Chứng minh rằng: a) KC vuông góc với AC b) AK // BC Bài 3: Cho tam giác ABC, D là trung điểm của AC, E là trung điểm của AB. Trên tia...
Đọc tiếp

Bài 1: Trên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB. Tia phân giác của các góc xOy cắt AB ở C. Chứng minh rằng:
C là trung điểm của AB


Bài 2: Cho tam giác ABC có Aˆ=900A^=900, M là trung điểm của AC. Trên tia đối của tia MB lấy điểm K sao cho MK = MB. Chứng minh rằng:
a) KC vuông góc với AC
b) AK // BC

Bài 3: Cho tam giác ABC, D là trung điểm của AC, E là trung điểm của AB. Trên tia đối của AB. Trên tia đối của tia DB lấy điểm N sao cho DN = DB. Trên tia đối của tia EC, lấy điểm M sao cho EM = EC. Chứng minh rằng A là trung điểm của MN.

Bài 4: Cho điểm A nằm trong góc nhọn xOy. Vẽ AH vuông góc với Ox, trên tia đối của tia HA lấy điểm B sao cho HB = HA. Vẽ AK vuông góc với Oy, trên tia đối của tia KA lấy điểm C sao cho KC = KA. Chứng minh rằng:
a) OB = OC.
b) Biết xOyˆ=axOy^=a, tính BOCˆBOC^ .

Bài 5: Tam giác ABC có AC > AB, tia phân giác của góc A cắt BC ở D. Trên AC lấy điểm E sao cho AE = AB. Chứng minh rằng AD vuông góc với BE.

Bài 6: Cho m là đường trung trực của đoạn thẳng Ab, C là điểm thuộc m. Gọi Cx là tia đối của tia CA, Cn là tia phân giác của góc bCx. Chứng minh rằng Cn vuông góc với m.

Bài 7: Cho hai đoạn thẳng Ab và CD cắt nhau tại trung điểm O của mỗi đoạn thẳng. Lấy các điểm E trên đoạn thẳng AD, F trên đoạn thẳng BC sao cho AE = BF. Chứng minh rằng ba điểm E, O, F thẳng hàng.

Bài 8: Cho đoạn thẳng AB. Vẽ về hai phía của Ab các đoạn thẳng AC và BD vuông góc với AB sao cho AC = BD. Chứng minh rằng ADCˆ=BCDˆADC^=BCD^.

Bài 9: Cho tam giác ABC, kẻ BD vuông góc với AC, kể CE vuông góc với AB. Trên tia đối của tia BD, lấy điểm H sao cho BH = AC. Trên tia đối của tia CE, lấy điểm K sao cho CK = AB. Chứng minh rằng Ah = Ak.

Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng không chứa B có bờ là AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy điểm E sao cho AE = AC. Chứng minh rằng:
a) AM=DE2AM=DE2
b) AM DEAM⊥ DE

Bài 11: Cho tam giác ABC có AB = AC. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chứng minh rằng:
a) BE = CD.
b) KBDˆ=KCEˆKBD^=KCE^

Bài 12: Cho tam giác ABC có Aˆ=600A^=600. Tia phân giác của góc B cắt AC ở D, tia phân giác của góc C cắt AB ở E. Các tia phân giác đó cắt nhau ở I. Chứng minh rằng ID = IE

Bài 13: Cho đoạn thẳng AB, O là trung điểm của AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tia Ax và By vuông góc với AB. Gọi C là một điểm thuộc tia Ax. Đường vuông góc với OC tại O cắt tia By ở D. Chứng minh rằng CD = AC + BD.

Bài 14: Trên cạnh BC của một tam giác ABC, lấy các điểm E và F sao cho BE = CF. Qua E và F, vẽ các đường thẳng song song với BA, chúng cắt cạnh AC theo thứ tự ở G và H. Chứng minh rằng EG + FH = AB.

Bài 15: Cho tam giác ABC cóAˆ=900A^=900, Ab = AC. Qua A vẽ đường thẳng d sao cho B và C nằm cùng phía đối với đường thẳng d. Kẻ BH và Ck vuông góc với d. Chứng minh rằng:
a) AH = CK.
b) HK = BH + CK

Bài 16: Cho tam giác ABC. Vẽ đoạn thẳng AD bằng AD bằng và AD bằng và vuông góc với AB (D và C nằm khác phía đối với AB). Vẽ đoạn thẳng AE bằng và vuông góc với AC (E và B nằm khác phía đối với AC). Vẽ AH vuông góc với BC. Đường thẳng HA cắt DE ở K. Chứng minh rằng DK = DE.

Bài 17: Cho tam giác ABC cân tại A có Aˆ<900A^<900, kẻ BD vuông góc với AC. Trên cạnh AB lấy điểm E sao cho AE = AD. Chứng minh rằng:
a) DE // BC
b) CE\[/TEX]ABBài18:TrêncnhhuynBCcatamgiácvuôngABC,lycácđimDvàEsaochoBD=BA,CE=CA.Tính[TEX]DAEˆ⊥\[/TEX]ABBài18:TrêncạnhhuyềnBCcủatamgiácvuôngABC,lấycácđiểmDvàEsaochoBD=BA,CE=CA.Tính[TEX]DAE^
Bài 19: Cho tam giác ABC, M là trung điểm của BC. Chứng minh rằng:
a) Nếu AM=BC2AM=BC2 thì Aˆ=900A^=900 .
b) Nếu AM>BC2AM>BC2 thì Aˆ=900A^=900
c) Nếu AM<BC2AM<BC2 thì Aˆ=900A^=900

Bài 20: Tam giác ABC có BˆCˆ=aB^−C^=a. Trên tia đối của tia AC lấy D sao cho AD = AB. Tính CBDˆCBD^ theo a.

Bài 21: Cho điểm M thuộc đoạn thẳng AB. Trên cùng một nửa mạt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, CB. Chứng minh rằng tam giác MEF là tam giác đều.

Bài 22: Cho tam giác ABC cân tại A, Aˆ=1200A^=1200, BC = 6cm. Đường vuông góc với AB tại A cắt BC ở D. Tính độ dài của BD.

Bài 23: Cho tam giác ABC có Aˆ=1200A^=1200. Trên tia phân giác của góc A, lấy điểm E sao cho AE = AB + AC. Chứng minh rằng tam giác BCE là tam giác đều.

Bài 23: Ở miền trong góc nhọn xOy, vẽ tia Oz sao cho xOzˆ=12yOzˆxOz^=12yOz^. Qua điểm A thuộc tia Oy, vẽ AH vuông với Ox, cắt Oz ở B. Trên tia Bz lấy điểm D sao cho BD = OA. Chứng minh rằng tam giác AOD là tam giác cân.

Bài 24: Cho xOzˆ=1200xOz^=1200, Oy là tia phân giác của xOzˆxOz^, Ot là tia phân giác của góc xOy, M là điểm thuộc miền trong của góc yOz. Vẽ MA Ox, vẽ MB Oy, vẽ MC Ot. Tính độ dài OC theo Ma và MB.

Bài 25: Cho tam giác ABC cân tại A,Aˆ=1400A^=1400. Trên nửa mặt phẳng bờ BC chứa điểm A, kẻ tia Cx sao cho ACxˆ=1100ACx^=1100. Gọi D là giao điểm của các tia Cx và Ba. Chứng minh rằng AD = BC.

Bài 26: Cho tam giác ABC có các góc nhọn nhỏ hơn 12001200. Vẽ ở phía ngoài tam giác ABC các tam giác đều ABD, ACE. Gọi M là giao điểm của DC và BE. Chứng minh rằng:
a) BMCˆBMC^=12001200
b) AMBˆAMB^=12001200

Bài 27: Cho tam giác cân ABC có Bˆ=Cˆ=500B^=C^=500. Gọi K là điểm trong tam giác sao cho KBCˆ=100KCBˆ=300KBC^=100KCB^=300. Chứng minh rằng tam giác ABK là tam giác cân và tính số đo góc BAK.

Bài 28: Cho tam giác ABC vuông tại A có AC = 3AB. Trên AC lấy các điểm D và E sao cho AD = DE = EC. Chứng minh rằng AEBˆ+ACBˆ=450AEB^+ACB^=450.

Bài 29: Cho tam giác cân ABC cóAˆ=1000A^=1000, tia phân giác của góc B cắt AC ở D. Chứng minh rằng BC = BD + AD.

Bài 30: Tam giác ABC vuông tại A có BC = 26cm, AB : AC = 5: 12. Tính các độ dài AB, AC.

Bài 31: Tam giác ABC có AB = 16cm, AC = 14cm,Bˆ=600B^=600. Độ dài BC bằng mấy ?

Bài 32: Cho các số: 5,9,12,13,15,16,20. Hãy chọn ra các bộ ba số là độ dài ba cạnh của một tam giác vuông.

Bài 33: Vẽ về một phía của đoạn thẳng AB = 5cm các tia Ax, By vuông góc với AB. Trên tia Ax lấy điểm D sao cho AD = 5cm. Trên tia By lấy điểm E sao cho BE = 1cm. Trên đoạn thẳng AB lấy điểm C sao cho Ac = 2cm. Góc DCE có là góc vuông hay không?

Bài 34: Cho tam giác ABC cân tại A,Aˆ<900A^<900. Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE. Chứng minh rằng AK là tia phân giác của góc A.

Bài 35: Cho tam giác ABC có M là trung điểm của BC và AM là tia phân giác của góc A. Chứng minh rằng tam giác ABC là tam giác cân.

Bài 36: Cho ΔΔ ABC vuông cân tại A. Một đường thẳng d bất kì qua A. Kẻ Bh và Ck vuông góc với đường thẳng d. Chứng minh rằng tổnBH2+CK2BH2+CK2có giá trị không đổi.

Bài 37: Cho tam giác Abc vuông tại A (AB > AC). Tia phân giác của góc B cắt AC ở D. Kẻ DH vuông góc với BC. Trên tia AC lấy điểm E sao cho AE = AB. Đường thẳng vuông góc với AE tại E cắt tia DH ở K. Chứng minh rằng:
a) BA = BH
b) DBKˆ=450

3
27 tháng 7 2018

không ai chả lời được hết đâu bạn ơi !

28 tháng 12 2018

ngu nhỉ