Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3.\)
Ta có:
\(x^2-9x-6\sqrt{x}+34=0\)
\(\Leftrightarrow\) \(x^2-2.5.x+25+x-2.3.\sqrt{x}+9=0\)
\(\Leftrightarrow\) \(\left(x-5\right)^2+\left(\sqrt{x}-3\right)^2=0\) \(\left(3\right)\)
Mà \(\left(x-5\right)^2\ge0;\) \(\left(\sqrt{x}-3\right)^2\ge0\) với \(x\in R\)
nên \(\left(3\right)\) \(\Leftrightarrow\) \(\left(x-5\right)^2=0;\) và \(\left(\sqrt{x}-3\right)^2=0\)
\(\Leftrightarrow\) \(x-5=0;\) và \(\sqrt{x}-3=0\)
\(\Leftrightarrow\) \(x=5;\) và \(x=9\)
Thay \(x=5\) vào vế trái của phương trình \(\left(3\right)\), ta được:
\(VT=\left(5-5\right)^2+\left(\sqrt{5}-3\right)^2\ne0=VP\) (vô lý!)
Tương tự với \(x=9\), ta cũng có điều vô lý như ở trên.
Vậy, phương trình vô nghiệm, tức tập nghiệm của phương trình \(S=\phi\)
\(1.\) Đặt biến phụ.
\(2.\) Biến đổi phương trình tương đương:
\(\left(2\right)\) \(\Leftrightarrow\) \(x^2+1+2y^2+2xy+2yz+2z^2+2\left(x+y\right)=2.2016z-2016^2\)
\(\Leftrightarrow\) \(x^2+1+2y^2+2xy+2yz+2z^2+2\left(x+y\right)-2.2016z+2016^2=0\)
\(\Leftrightarrow\) \(\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+\left(y^2+2yz+z^2\right)+\left(z^2-2.2016z+2016^2\right)=0\)
\(\Leftrightarrow\) \(\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(y+z\right)^2+\left(z-2016\right)^2=0\)
\(\Leftrightarrow\) \(\left(x+y+1\right)^2+\left(y+z\right)^2+\left(z-2016\right)^2=0\)
Vì \(\left(x+y+1\right)^2\ge0;\) \(\left(y+z\right)^2\ge0;\) \(\left(z-2016\right)^2\ge0\) với mọi \(x,y,z\in R\)
Do đó, \(\left(x+y+1\right)^2=0;\) \(\left(y+z\right)^2=0;\) và \(\left(z-2016\right)^2=0\)
\(\Leftrightarrow\) \(x+y+1=0;\) \(y+z=0;\) và \(z-2016=0\)
\(\Leftrightarrow\) \(x=-y-1;\) \(y=-z;\) và \(z=2016\)
\(\Leftrightarrow\) \(x=2015;\) \(y=-2016;\) và \(z=2016\)
#)Giải :
VD1:
Với \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)ta có :
\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)
\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)( không thỏa mãn )
\(\Rightarrow-1\le x\le0\)
Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)
Với \(\orbr{\begin{cases}x=-1\\x=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)
Vậy...........................
#)Giải :
VD2:
\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)
\(\Leftrightarrow y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1\)
\(\Leftrightarrow y^4=\left(x^2+y^2\right)+3x^2+4z^2+1\)
Ta dễ nhận thấy : \(\left(x^2+y^2\right)^2< y^4< \left(x^2+y^2+2\right)^2\)
Do đó \(y^4=\left(x^2+y^2+1\right)^2\)
Thay vào phương trình, ta suy ra được \(x=z=0\)
\(\Rightarrow y=\pm1\)
c, x^3 - y^3 = xy + 8
1) Nếu x-y <= -1
(x -y)(x^2 + xy + y^2) = xy +8
=> (x -y)(x^2 + xy + y^2) <= -(x^2 + xy +y^2)
=> xy +8 <= -(x^2 + xy +y^2)
=> (x+y)^2 + 8 <=0 => Vô nghiệm
2) Nếu x-y =0 => x=y , Vô nghiệm
3) x- y>=1
=> (x -y)(x^2 + xy + y^2) >= x^2 + xy + y^2
=> xy + 8 >= x^2 + xy + y^2
=> x^2 + y^2 <=8
=> x^2 <=8
=> x=0 => y= -2
=> x= 1 => y + y^3 + 7 =0 (loại)
Rõ ràng \(x=y=z=0\) là nghiệm của hệ
Với \(xyz\ne0\), Ta có
\(y=\frac{2x^2}{x^2+1}\le\frac{2x^2}{2x}=x\)
\(z=\frac{3y^3}{y^4+y^2+1}\le\frac{3y^3}{3y^2}=y\)
\(x=\frac{4z^4}{z^6+z^4+z^2+1}\le\frac{4z^4}{4z^3}=z\)
Suy ra \(y\le x\le z\le y\Rightarrow x=y=z\)
Từ pt thứ nhất của hệ suy ra
\(\frac{2x^2}{x^2+1}=x\Leftrightarrow2x=1=x^2\)( vì \(x\ne0\))\(\Leftrightarrow x=1\)
Vậy hệ pt có hai nghiệm \(\left(0,0,0\right)\)và \(\left(1,1,1\right)\)