Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{9\times10}\)
=\(2\times\frac{1}{1\times2}+2\times\frac{1}{2\times3}+2\times\frac{1}{3\times4}+...+2\times\frac{1}{9\times10}\)
=\(2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\right)\)
=\(2\times\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
=\(2\times\left(\frac{1}{1}-\frac{1}{10}\right)=2\times\left(\frac{10}{10}-\frac{1}{10}\right)=2\times\frac{9}{10}\)
=\(\frac{9}{5}\)
=2-1+1-\(\frac{2}{3}\)+\(\frac{2}{3}\)-\(\frac{1}{2}\)+...+\(\frac{2}{9}\)-\(\frac{1}{5}\)
=2-\(\frac{1}{5}\)
=\(\frac{10}{5}\)-\(\frac{1}{5}\)
=\(\frac{9}{5}\).
**** mình nha mấy bạn.
= \(\frac{1x1x1}{1x2x4}x\frac{2.2.1}{1.1.2.2}=\frac{1}{8}.1=\frac{1}{8}\)
=1X2X3/1X2X3X4X2= 1/8 =3X2X2X2X5/3X2X2X5X2= 1/1
=1/8X1/1=1/8
( 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 +1/5.6 ) x 10 - x = 0
= ( 1- 1/2 +1/2 -1/3 +1/3 - 1/4 + 1/4 - 1/5 +1/5 -1/6 ) x 10 - x = 0
= ( 1 - 1/6 ) x 10 - x = 0
= 5/6 x 10 - x =0
= 25/3 - x =0
x = 25/3 - 0
x = 25/3
\(\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\right)\times10-x=0\)
\(\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\times10-x=0\)
\(\left(\frac{1}{1}-\frac{1}{6}\right)\times10-x=0\)
\(\frac{5}{6}\times10-x=0\)
\(\frac{25}{3}-x=0\)
x =\(\frac{25}{3}-0=\frac{25}{3}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
\(\dfrac{2}{1\times2\times3}+\dfrac{2}{2\times3\times4}+\dfrac{2}{3\times4\times5}+...+\dfrac{2}{48\times49\times50}\)
\(=\dfrac{1}{1\times2}-\dfrac{1}{2\times3}+\dfrac{1}{2\times3}-\dfrac{1}{3\times4}+\dfrac{1}{3\times4}-\dfrac{1}{4\times5}+...+\dfrac{1}{48\times49}-\dfrac{1}{49\times50}\)
\(=\dfrac{1}{1\times2}-\dfrac{1}{49\times50}\)
\(=\dfrac{1}{2}-\dfrac{1}{2450}\)
\(=\dfrac{612}{1225}\)
\(\text{#}Toru\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{10-9}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
1/2-1/3+1/3-1/4+...+1/9-1/10
=1/2-1/10
=2/5
Chúc bạn học giỏi và thông minh hơn!
\(1,\\ =\dfrac{2-1}{1\times2}+\dfrac{3-2}{2\times3}+\dfrac{4-3}{3\times4}+\dfrac{5-4}{4\times5}+.....+\dfrac{99-98}{98\times99}+\dfrac{100-99}{99\times100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+....+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{100-1}{100}=\dfrac{99}{100}\)
\(2,=\dfrac{13-11}{11\times13}+\dfrac{15-13}{13\times15}+....+\dfrac{21-19}{19\times21}+\dfrac{23-21}{21\times23}\\ =\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+....+\dfrac{1}{19}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{23}\\ =\dfrac{1}{11}-\dfrac{1}{23}\\ =\dfrac{23-11}{11\times23}=\dfrac{12}{253}\)
@seven
a: 1/1*2+1/2*3+...+1/99*100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100
=99/100
b: 2/11*13+2/13*15+...+2/21*23
=1/11-1/13+1/13-1/15+...+1/21-1/23
=1/11-1/23
=12/253
B =\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{2}{3}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{7}{9}-\dfrac{1}{10}=\dfrac{61}{90}\)
\(\dfrac{61}{90}\)