\(-\dfrac{a}{3}>-\dfrac{b}{3}\) ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2023

Là khẳng định A vì ta có thể lấy một số tự nhiên bất kỳ để đặt MSC cho cả a và b và ta lấy phân số nào lớn hơn trừ đi phân số bé hơn 

24 tháng 3 2018

a)Vì a<b=>2a<2b

=>2a+5<2b+5

b)Vì a<b=>-10a>-10b

=>2-10a>2-10b

c)Vì a<b=>7a<7b

=>7a-3<7b-3(1)

Vì -3<-1=>7b-3<7b-1(2)

Từ (1) và (2)=>đpcm

d)Vì a<b=>\(-\dfrac{a}{3}< -\dfrac{b}{3}\)

=>\(3-\dfrac{a}{3}>3-\dfrac{b}{3}\)(3)

Vì 3>1=>\(3-\dfrac{b}{3}>1-\dfrac{b}{3}\)(4)

Từ (3) và (4)=> đpcm

24 tháng 3 2018

a, Ta có: a < b \(\Rightarrow\) 2a < 2b \(\Rightarrow\) 2a + 5 < 2b + 5

b, Ta có: a < b \(\Rightarrow\) -10a > -10b (đổi dấu) \(\Rightarrow\) 2 + (-10a) > 2 + (-10b) \(\Leftrightarrow2-10a>2-10b\)

c, Ta có: a < b \(\Rightarrow\)7a < 7b

Lại có: -3 < -1

\(\Rightarrow\) 7a + (-3) < 7a + (-1) \(\Leftrightarrow\) 7a - 3 < 7b - 1

d, Ta có: a < b \(\Rightarrow-\dfrac{a}{3}>-\dfrac{b}{3}\)(đổi dấu)

Lại có: 3 > 1

\(\Rightarrow3+\left(-\dfrac{a}{3}\right)>1+\left(-\dfrac{b}{3}\right)\Leftrightarrow3-\dfrac{a}{3}>1-\dfrac{b}{3}\)

22 tháng 4 2017

Giải bài 25 trang 47 SGK Toán 8 Tập 2 | Giải toán lớp 8

16 tháng 8 2017

chọn b

4 tháng 5 2017

Ta có:a-7>b-7\(\Rightarrow\)a>b

Vì a>b\(\Rightarrow\)a+7>b+7

Vậy khẳng định(C) là đúng

2 tháng 8 2018

Bài 1. Giải các phương trình sau
a) \(5\left(x-2\right)=3\left(x+1\right)\)
\(\Leftrightarrow5x-10=3x+3\)
\(\Leftrightarrow5x-3x=10+3\)
\(\Leftrightarrow2x=13\)
\(\Leftrightarrow x=\dfrac{13}{2}\)
Vậy \(S=\left\{\dfrac{13}{2}\right\}\)
b) \(\dfrac{2x}{x+1}+\dfrac{3}{x-2}=2\left(1\right)\)
Điều kiện: \(x+1\ne0\Leftrightarrow x\ne-1\)\(x-2\ne0\Leftrightarrow x\ne2\)
\(\left(1\right)\Leftrightarrow\dfrac{2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{2\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow2x\left(x-2\right)+3\left(x+1\right)=2\left(x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2x^2-4x+3x+3=2x^2-4x+2x-4\)
\(\Leftrightarrow2x^2-4x+3x-2x^2+4x-2x=-3-4\)
\(\Leftrightarrow x=-7\left(N\right)\)
Vậy \(S=\left\{-7\right\}\)
c) \(|2x+7|=3\)
\(\Leftrightarrow2x+7=3\) hoặc \(2x+7=-3\)
.. \(2x+7=3\Leftrightarrow2x=-4\Leftrightarrow x=-2\)
.. \(2x+7=-3\Leftrightarrow2x=-10\Leftrightarrow x=-5\)
Vậy \(S=\left\{-2;-5\right\}\)

Bài 2 bạn ghi rõ đề lại nha r mik giải lun cho

3 tháng 8 2018

Bài 2. Giải các bất phương trình sau:
a) \(\left(x+2\right)^2< \left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow x^2+4x+4< x^2-1\)
\(\Leftrightarrow x^2+4x-x^2< -4-1\)
\(\Leftrightarrow4x< -5\)
\(\Leftrightarrow x>-\dfrac{5}{4}\)
Vậy \(S=\left\{x/x< -\dfrac{5}{4}\right\}\)
Câu b mik tính ko ra nhá sorry!!!!!!!!!!

AH
Akai Haruma
Giáo viên
15 tháng 7 2017

Lời giải:

Biến đổi $A$ :

\(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}=\frac{1}{4}(a+2b+3c)+\left(\frac{3a}{4}+\frac{3}{a}\right)+\left (\frac{b}{2}+\frac{9}{2b}\right)+\left (\frac{c}{4}+\frac{4}{c}\right)\)

Ta có: \(\frac{1}{4}(a+2b+3c)\geq \frac{20}{4}=5\)

Áp dụng BĐT AM-GM: \(\left\{\begin{matrix} \frac{3a}{4}+\frac{3}{a}\geq 3\\ \frac{b}{2}+\frac{9}{2b}\geq 3\\ \frac{c}{4}+\frac{4}{c}\geq 2\end{matrix}\right.\)

Do đó \(A\geq 5+3+3+2=13\) hay \(A_{\min}=13\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} a=2\\ b=3\\ c=4\end{matrix}\right.\)

Mấu chốt của bài toán là cách tìm điểm rơi.

AH
Akai Haruma
Giáo viên
15 tháng 7 2017

Ôn tập cuối năm phần số học

a: \(x>3:\dfrac{1}{2}=6\)

b: \(x>-2:\left(-\dfrac{1}{3}\right)=6\)

c: \(x>-4:\dfrac{2}{3}=-6\)

d: \(x< -6:\dfrac{3}{5}=-10\)