Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1/a+1/b+1/c+1/d = 1,
Tương đương bcd+acd+abd+abc = abcd.
Trong tập hợp số tự nhiên N có 1 số tính chất sau đây: Tổng của 2 số lẻ là 1 số chẵn; tổng của 1 số lẻ và 1 số chẵn là số lẻ; tích của 2 số lẻ là 1 số lẻ; tích của 2 số chẵn là 1 số chẵn; tích của 1 số chẵn và 1 số lẻ là 1 số chẵn.
Từ các tính chất trên ta thấy: Giả sử a, b, c, d đều lẻ thì lúc đó ta có: abcd lẻ, bcd lẻ, acd lẻ, abd lẻ, abc lẻ, bcd+acd+abd+abc chẵn. Vậy suy ra a, b, c, d không thể cũng lẻ
a) Số lớn nhất:" 9998
Số bé nhất: 1000
Vậy có: (9998 - 1000) : 2 + 1 = 4500 số
Ta có: Số các chữ số lẻ là : (9-1):2+1 = 5 số
Vậy thành lập được : 5 x 4 = 20 số
Có thể chọn 3 chữ số hàng trăm
2 chữ số hàng chục
1 chữ số hàng đơn vị
=> có 3*2*1 =6 số có 3 chữ số khác nhau
Ta có 1/a+1/b+1/c+1/d = 1,
Tương đương bcd+acd+abd+abc = abcd.
Trong tập hợp số tự nhiên N có 1 số tính chất sau đây: Tổng của 2 số lẻ là 1 số chẵn; tổng của 1 số lẻ và 1 số chẵn là số lẻ; tích của 2 số lẻ là 1 số lẻ; tích của 2 số chẵn là 1 số chẵn; tích của 1 số chẵn và 1 số lẻ là 1 số chẵn. Từ các tính chất trên ta thấy: Giả sử a, b, c, d đều lẻ thì lúc đó ta có: abcd lẻ, bcd lẻ, acd lẻ, abd lẻ, abc lẻ, bcd+acd+abd+abc chẵn.
Vậy suy ra a, b, c, d không thể cũng lẻ
Số Chia hết cho 2
số tận cùng phải có số chẵn
=>câu B chia hết cho 2 (1)
chia hết cho 3
tổng các chữ số chia hết cho 3
=> A và cChia hết cho 3 (2)
=> Vậy số abc : không thể có
Chọn Câu D
tớ sẽ cho 5 bạn đầu tiên trả lời đúng
Để giải bài toán này, ta có thể sử dụng phương pháp liệt kê hoặc algebra. Dưới đây là cách giải bằng phương pháp algebra.
Vì c là số lẻ, ta có thể biểu diễn nó dưới dạng c = 2k + 1, với k là một số nguyên dương.
Substitute giá trị của c vào phương trình a + b + c = 21 ta có:
a + b + 2k + 1 = 21
a + b = 20 - 2k
Vì a < b < 21 - a - b, ta có thể thay bằng biến x và sử dụng phương pháp bisection để tìm nghiệm của x bằng cách tìm giá trị k thích hợp. Đặt f(k) = a + x + 2k + 1 - 21.
Vì a và x là số lẻ nên a + x là số chẵn, khi đó f(k) cũng là số chẵn.
Ta có thể kiểm tra giá trị của f(k) để tìm giá trị của x. Lưu ý rằng k phải thỏa mãn điều kiện k ≤ (21 - 1)/2 = 10.
Như vậy, để tìm số lẻ có ba chữ số thoả mãn điều kiện a < b < c và a + b + c = 21, ta có thể thực hiện các bước sau:
Ví dụ, thử với k = 1, ta có:
a + x = 20 - 2(1) = 18
f(1) = a + x + 3 - 21 = a + x - 18
Nếu a + x là số lẻ, thì ta phải có a + x - 18 là số lẻ và bằng 1, 3, 5, 7 hoặc 9.
Vậy có hai số lẻ có ba chữ số thoả mãn yêu cầu của bài toán, đó là 793 và 911.