Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=\frac{3.4.5.6.....100}{2.3.4.5.6.....99}\)
Rút ra nhé:
\(T=\frac{100}{2}\)
T=50.
Chúc em học tốt^^
\(S=1+\frac{1}{3}+\frac{1}{3^2}+........+\frac{1}{3^n}\)
\(3S=3+1+\frac{1}{3}+.......+\frac{1}{3^{n-1}}\)
\(\Rightarrow3S-S=\left(3+1+\frac{1}{3}+......+\frac{1}{3^{n-1}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^n}\right)\)
\(\Rightarrow2S=3-\frac{1}{3^n}\Rightarrow2S=\frac{3^{n+1}-1}{3^n}\Rightarrow S=\frac{3^{n+1}-1}{2.3^n}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.......+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}\)
\(A=\frac{2^{100}-1}{2^{100}}\)
2A = 2 + 1 + 1/2 + 1/2^2 + ... + 1/2^2011
A = 1 + 1/2 + .. + 1/2^2011 + 1/2^2012
2A - A = 2 + 1 + 1/2 + .. + 1/2^2011 - 1 - 1/2 - ... - 1/2^2011 - 1/2^2012
A = 2 - 1/2^2012
A = \(\frac{2^{2012}-2}{2^{2012}}\)
A = 1+1/2+1/2^2+1/2^3+.....+1/2^2012
2A= 2. (1+1/2+1/2^2+1/2^3+.....+1/2^2012)
2A= 2 + 1 + 1/2 + 1/2^2 + 1/2^3 + ...+ 1/2^2011
2A - A= (2 + 1 + 1/2 + 1/2^2 + 1/2^3+ ...+ 1/2^2011) - (1+1/2+1/2^2+1/2^3+.....+1/2^2012)
1A= 2 + 1 + 1/2 + 1/2^2 + 1/2^3 + ...+ 1/2^2011 - 1-1/2-1/2^2+1/2^3+.....+1/2^2012
1A= 2 - 1/2^2012
A= 2-1/2^2012
A= 2 - 1/2^2012
Đặt \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}+\frac{1}{2^{2012}}\)
\(\Rightarrow2A-A=A=2-\frac{1}{2^{2012}}\)
Bài này có rắc rối đâu em?
Thực hiện phép tính trong ngoặc lại là ra dạng (n+1)/n.
1 dãy các số liên tục kéo dài nhân với nhau thì triệt tiêu là xong!
Chúc em học tốt!