K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2015

Đề phải là Tìm GTNN y= x+6-x ^2-1 chứ !

 

AH
Akai Haruma
Giáo viên
25 tháng 7

Lời giải:
Áp dụng BĐT AM-GM:

$x^6+\frac{1}{8}+\frac{1}{8}\geq 3\sqrt[3]{\frac{x^6}{64}}=\frac{3}{4}x^2$

$y^6+\frac{1}{8}+\frac{1}{8}\geq \frac{3}{4}y^2$

Cộng 2 BĐT trên và thu gọn theo vế thì:

$A+\frac{1}{2}\geq \frac{3}{4}(x^2+y^2)$

$\Leftrightarrow A+\frac{1}{2}\geq \frac{3}{4}$

$\Leftrightarrow A\geq \frac{1}{4}$

--------------------

Lại có:

$x^2+y^2=1\Rightarrow x^2\leq 1; y^2\leq 1\Rightarrow x^4\leq 1; y^4\leq 1$

Khi đó:

$x^6\leq x^2; y^6\leq y^2$

$\Rightarrow x^6+y^6\leq x^2+y^2$

$\Rightarrow A\leq 1$
Vậy $A_{\min}=\frac{1}{4}; A_{\max}=1$

18 tháng 9 2017

Cau 1: Ta có: 
A=x^2 - 2*3x + 9 +2(y^2 - 2y +1) + 7 
=(x-3)^2 +2(y-1)^2 +7 >+ 7 
=> minA= 7 <=> x=3 và y=1

18 tháng 9 2017

câu 1 đâu có y

10 tháng 7 2019

Câu trên mình thấy sai sai vì nếu x càng lớn thì A càng nhỏ , bạn xem lại đề nhé

Câu 2

\(\frac{3}{2}x+\frac{6}{x}\ge6\)\(\frac{1}{2}y+\frac{8}{y}\ge4\)

\(\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)

Cộng các bĐT trên

=> \(3x+2y+\frac{6}{x}+\frac{8}{y}\ge9+6+4=19\)

MinP=19 khi x=2;y=4

17 tháng 11 2017

1/ Điều kiện: x>=2009.

Ta có: \(y=x-2\sqrt{x-2009}=\left(x-2009\right)-2\sqrt{x-2009}+1+2008.\)

=> \(y=\left(\sqrt{x-2009}-1\right)^2+2008\)

Do \(\left(\sqrt{x-2009}-1\right)^2\ge0\) => \(y=\left(\sqrt{x-2009}-1\right)^2+2008\ge2008\)(Với mọi x>=2009)

GTNN của y là: y=2008

Đạt được khi \(\left(\sqrt{x-2009}-1\right)^2=0\) <=> x-2009=1 <=> x=2010

2/ Ta có: x+y=6 => y=6-x.  Đặt A=x2y

=> A=x2y=x2(6-x)=6x2-x3 = x(6x-x2)=x(9-9+6x-x2)=x[9-(x2-6x+9)] =x[9-(x-3)2]

Do x>0 và (x-3)2 >=0  => A đạt giá trị lớn nhất khi (x-3)2=0 <=> x=3 

=> GTLN của A=x2y là 3.9=27  Đạt được khi x=y=3

17 tháng 8 2017

Ta có:

\(\hept{\begin{cases}x+y=m\\x^2+y^2=-m^2+6\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=m\\\left(x+y\right)^2-2xy=-m^2+6\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y=m\\xy=m^2-3\end{cases}}}\)

Suy ra:

\(P=xy+2\left(x+y\right)=m^2-3+2m=\left(m^2+2m+1\right)-4=\left(m+1\right)^2-4\ge-4\)

Vậy GTNN của P là -4 khi m = -1.

28 tháng 12 2017

vậy GTNN p = -4 khi m=-1

NV
5 tháng 1 2021

Bài này chỉ có min, không có max của A nhé bạn

Muốn có max thì x;y;z phải không âm

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

Tìm min:

Áp dụng BĐT AM-GM:

$x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}=\frac{6^2}{3}=12$

Vậy $A_{\min}=12$. Giá trị này đạt tại $x=y=z=2$

--------------

Tìm max:

$A=x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=36-2(xy+yz+xz)$

Vì $x,y,z\geq 0\Rightarrow xy+yz+xz\geq 0$

$\Rightarrow A=36-2(xy+yz+xz)\leq 36$

Vậy $A_{\max}=36$. Giá trị này đạt tại $(x,y,z)=(0,0,6)$ và hoán vị.