Viết lại câu theo chỉ dẫn trong ngoặc
1, Why/not/you/go/school/yesterday?(Make a complete question)
.................................................. ................................................
2, The dirty vegetables made Ba sick.
.................................................. ................................................
3, He has a big breakfast. She has a big breakfast. ( combine using "so")
.................................................. ................................................
4, Mr long bought a lot of beautiful toys for his son. ( make a question with "what")
.................................................. ................................................
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hệ
Hai đường thẳng d và d' cắt nhau khi và chỉ khi hệ có nghiệm duy nhất.
Nhân hai về của phương trình (3) với 2 rồi cộng vế với vế vào phương trình (2), ta có t = 2;
s = 0. Thay vào phương trình (1) ta có 1 + 2a = 1 => a =0.
Vậy a = 0 thì d và d' cắt nhau.
Xét hệ
Hai đường thẳng d và d' cắt nhau khi và chỉ khi hệ có nghiệm duy nhất.
Nhân hai về của phương trình (3) với 2 rồi cộng vế với vế vào phương trình (2), ta có t = 2;
s = 0. Thay vào phương trình (1) ta có 1 + 2a = 1 => a =0.
Vậy a = 0 thì d và d' cắt nhau.
a) + cos2250 = cos(1800 + 450 ) = -cos450 =
+ sin2400 = sin(1800 + 600 ) = -sin600 =
+ cot(-150 ) = -cot150 = -tan750 = -tan(300 + 450 )
= -2 - √3
+ tan 750 = cot150= 2 + √3
b)
+ sin = sin = sincos + cossin
+ cos = cos = coscos + sinsin
+ tan = tan(π + ) = tan = tan =
= 2 - √3
1/ Why didn't you go to school yesterday?
2/ What did make Ba sick?
3/ He has a big breakfast, so has she.
4/ What did Mr Long buy for his son?
a) Phương trình đường thẳng d có dạng: , với t ∈ R.
b) Đường thẳng d vuông góc với mặt phẳng (α): x + y - z + 5 = 0 nên có vectơ chỉ phương
(1 ; 1 ; -1) vì là vectơ pháp tuyến của (α).
Do vậy phương trình tham số của d có dạng:
c) Vectơ (2 ; 3 ; 4) là vectơ chỉ phương của ∆. Vì d // ∆ nên cùng là vectơ chỉ phương của d. Phương trình tham số của d có dạng:
d) Đường thẳng d đi qua hai điểm P(1 ; 2 ; 3) và Q(5 ; 4 ; 4) có vectơ chỉ phương
(4 ; 2 ; -1) nên phương trình tham số có dạng:
a) Đường thẳng d đi qua M1( -3 ; -2 ; 6) và có vectơ chỉ phương (2 ; 3 ; 4).
Đường thẳng d' đi qua M2( 5 ; -1 ; 20) và có vectơ chỉ phương (1 ; -4 ; 1).
Ta có = (19 ; 2 ; -11) ; = (8 ; 1 ; 14)
và = (19.8 + 2 - 11.4) = 0
nên d và d' cắt nhau.
Nhận xét : Ta nhận thấy , không cùng phương nên d và d' chỉ có thể cắt nhau hoặc chéo nhau.
Xét hệ phương trình:
Từ (1) với (3), trừ vế với vế ta có 2t = 6 => t = -3, thay vào (1) có t' = -2, từ đó d và d' có điểm chung duy nhất M(3 ; 7 ; 18). Do đó d và d' cắt nhau.
b) Ta có : (1 ; 1 ; -1) là vectơ chỉ phương của d và (2 ; 2 ; -2) là vectơ chỉ phương của d' .
Ta thấy và cùng phương nên d và d' chỉ có thể song song hoặc trùng nhau.
Lấy điểm M(1 ; 2 ; 3) ∈ d ta thấy M d' nên d và d' song song.
Đường thẳng ∆ qua điểm M(-3 ; -1 ; -1) có vectơ chỉ phương (2 ; 3 ; 2).
Mặt phẳng (α) có vectơ pháp tuyến (2 ; -2 ; 1).
Ta có M (α) và = 0 nên ∆ // (α).
Do vậy d(∆,(α)) = d(M,(α)) =
Đường thẳng d qua điểm M(1 ; 2 ; 0) và có vec tơ chỉ phương (-1 ; 2 ; 3).
Đường thẳng d' qua điểm M'(1 ; 3 ;1) và có vectơ chỉ phương (1 ; -2 ; 0).
Cách 1. Xét
= (2 ; 1 ;-5).
= (0 ; 1 ; 1).
Ta có : = 2.0 + 1.1 + (-5).1 = -4 ≠ 0.
Do đó d và d' chéo nhau.
Cách 2: Vì và không cùng phương nên d và d' chỉ có thể là chéo nhau hoặc cắt nhau.
Ta xét giao điểm của d và d':
=> hệ vô nghiệm.
Do đó d và d' không thể cắt nhau. Vì vậy d và d' chéo nhau.
Question 1: 109 seconds.
Question 2: 4 m/h.
Question 3: 200m/h.
Question 5: 30m.