Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quy luật: 6 = 1.6 66 = 6.11 176 = 11.16 336 = 16.21 ... 1/(1.6) + 1/(6.11) + 1/(11.16) + … + 1/[(5n-4)(5n+1)] =(1/1 – 1/6)/5 + (1/6 – 1/11)/5 + (1/11 – 1/16)/5 +…+ [1/(5n-4) – 1/(5n+1)]/5 =[1/1 – 1/6 + 1/6 – 1/11 + 1/11 – 1/16 + … + 1/(5n-4) – 1/(5n+1)]/5 =[1 – 1/(5n+1)]/5 Tổng 100 số đầu =[1 – 1/(5.100+1)]/5 = 100/501
Mìnhchỉ làm được cái 2 yhui....vif cô mìn dạy rồi
Thừa số thứ nhất của mẫu số của phân số thứ 100 là:
\(\left(100-1\right):1+1=100\)
=> Mẫu số của phân số thứ 100 là 100.101
Tổng 100 số hạng đầu tiên:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b) Ta xét mẫu số của các số hạng trong dãy :
6 = 1.6
66 = 6.11
176 = 11.16
336 = 16.21
........
Thừa số thứ nhất của mẫu của phân số thứ 100 của dãy là:
\(\left(100-1\right).5+1=496\)
=> Mẫu của phân số thứ 100 là 496.501.
Tính tổng 100 số hạng đầu:
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{496.501}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{496}-\frac{1}{501}\)
\(=1-\frac{1}{501}=\frac{500}{501}\)
Ta có:
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{199.201}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{199.201}\right)\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{199}-\frac{1}{201}\right)\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{201}\right)=\frac{1}{2}.\frac{200}{201}=\frac{100}{201}\)
Còn bài kế tiếp mình không rõ quy luật nên không có giúp bạn được.