Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{780}\right)\)
\(=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}.....\dfrac{779}{780}\)\(=\)
Ta có: 1/3 + −2/5+ 1/6 + −1/5 ≤ x < −3/4+2/7+-1/4+3/5+5/7
⇒10-12+5-6/30≤ x< -105+40-35+84+100/140
⇒-3/30≤ x <84/140
⇒-0,1≤ x < 0,6
⇒x=0
\(-\dfrac{1}{3}< \dfrac{A}{36}< \dfrac{B}{18}< -\dfrac{1}{4}\)
<=>\(-\dfrac{12}{36}< \dfrac{A}{36}< \dfrac{2B}{36}< -\dfrac{9}{36}\)
<=> -12 < x + 1 < 2(2 - y) < -9
<=> -12 < x + 1 < 4 - 2y < -9
=> x + 1 = -11 => x = -12
4 - 2y = -10 => y = 7
Vậy (x; y) = (-12; 7)
−13<A36<B18<−14−13<A36<B18<−14
<=>−1236<A36<2B36<−936−1236<A36<2B36<−936
<=> -12 < x + 1 < 2(2 - y) < -9
<=> -12 < x + 1 < 4 - 2y < -9
=> x + 1 = -11 => x = -12
4 - 2y = -10 => y = 7
Vậy (x; y) = (-12; 7)
a: \(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}< x< \dfrac{1}{48}-\dfrac{1}{16}+\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{6}{12}-\dfrac{4}{12}-\dfrac{3}{12}< x< \dfrac{1}{48}-\dfrac{3}{48}+\dfrac{8}{48}\)
\(\Leftrightarrow\dfrac{-1}{12}< x< \dfrac{1}{8}\)
\(\Leftrightarrow-2< 24x< 3\)
=>x=0
b: \(\Leftrightarrow\dfrac{9-10}{12}< \dfrac{x}{12}< 1-\dfrac{8-3}{12}=\dfrac{7}{12}\)
=>-1<x<7
hay \(x\in\left\{0;1;2;3;4;5;6\right\}\)
a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)
c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
Vậy A < B
a/ Ta có :
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...........+\dfrac{1}{n^2}\)
Ta thấy :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
.......................
\(\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)
\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...........+\dfrac{1}{\left(n-1\right)n}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(\Leftrightarrow A< 1-\dfrac{1}{n}< 1\)
\(\Leftrightarrow A< 1\)
b/ Ta có :
\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+.................+\dfrac{1}{\left(2n\right)^2}\)
\(=\dfrac{1}{4}\left(1+\dfrac{1}{2^2}+\dfrac{1}{4^2}+..........+\dfrac{1}{n^2}\right)\)
Ta thấy :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
..................
\(\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)
\(\Leftrightarrow B< \dfrac{1}{4}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.........+\dfrac{1}{\left(n-1\right)n}\right)\)
\(\Leftrightarrow B< \dfrac{1}{4}\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+......+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)
\(\Leftrightarrow B< \dfrac{1}{4}\left(1+1-\dfrac{1}{n}\right)\)
\(\Leftrightarrow B< \dfrac{1}{2}-\dfrac{1}{4n}< \dfrac{1}{2}\)
\(\Leftrightarrow B< \dfrac{1}{2}\)
\(\)\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(A< 1-\dfrac{1}{n}< 1\)
\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2n^2}\)
\(B=\dfrac{1}{2}\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2n^2}\right)\)
\(B=\dfrac{1}{4}+\dfrac{1}{2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2n^2}\right)\)
\(B< \dfrac{1}{4}+\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{\left(n-1\right)n}\right)\)
Kiyoko Vũ
a, xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => A < 6
b, Câu hỏi của trịnh quỳnh trang - Toán lớp 6 - Học toán với OnlineMath
Co: \(\frac{1+2+3+...+a}{a}\)=\(\frac{1}{a}+\frac{2}{a}+\frac{3}{a}+...+\frac{a}{a}\)
\(\frac{1+2+3+...+b}{b}\)=\(a>b=>\frac{1}{a}< \frac{1}{b},\frac{2}{a}< \frac{2}{b},...\)
=>\(\frac{1+2+3+...+a}{a}< \frac{1+2+3+...+b}{b}\)
Biện luận trước khi giải: \(a,b\inℕ^∗\). Khi a hoặc b bằng 0 thì biểu thức không xác định.
Bài làm:
Ta có \(1+2+3+...+a=\dfrac{a\left(a+1\right)}{2}\)
Và \(1+2+3+...+b=\dfrac{b\left(b+1\right)}{2}\)
Suy ra \(\dfrac{a\left(a+1\right)}{2a}< \dfrac{b\left(b+1\right)}{2b}\) <=> \(\dfrac{a+1}{2}< \dfrac{b+1}{2}\)
<=> \(a+1< b+1\) <=> a < b