Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{x^3.y^2.z (1)}\)
\(\text{2.x^3.y.z^2 (2)}\)
\(\text{-3.x^2.y.z.t (3)}\)
\(\text{x.y^2.z.t^3 (4)}\)
\(\text{a)Qua 2 đơn thức (1);(2) ta có :}\)
\(x.z>0\) (Để đơn thức là dương)
\(x.y>0\)(Để đơn thức là dương)
\(=>y.z>0\)
\(\text{Qua đơn thức (3) ta có :}\)
\(\text{t<0 (Để đơn thức là dương)}\)
\(=>t^3< 0\)
\(\text{Qua đơn thức (4) ta có :}\)
x.z<0 (Để đơn thức là dương)
Nhưng x.z > 0 (Theo biểu thức (1);(2)
=> Cả 4 đơn thức ko thể cùng dương
*phần b làm tương tự
*Bài này phông chữ bị lỗi phần cuối nên cố nhìn nhé --'
#ht
Ta có :
\(yt.yz=48.24\)
\(\Rightarrow y^2.zt=48.24\)
Mà \(yt=32\)
\(\Rightarrow y^2.32=48.24\)
\(\Rightarrow y^2=\frac{48.24}{32}=36\)
\(\Rightarrow y=\pm6\)
+ Nếu \(y=6\)
\(\Rightarrow t=48:6=8\)
\(z=24:6=4\)
\(x=12:6=2\)
+ Nếu \(y=-6\)
\(\Rightarrow t=48:\left(-6\right)=-8\)
\(z=24:\left(-6\right)=-4\)
\(x=12:\left(-6\right)=-2\)
Vậy : \(x=-2;y=-6;z=-4;t=-8\) hoặc \(x=2;y=6;z=4;t=8\)
\(\hept{\begin{cases}xy=a\\x+y=b\end{cases}\Rightarrow x\left(b-x\right)=a\Leftrightarrow-x^2+bx=a\Leftrightarrow x^2-bx+\frac{b^2}{4}=\frac{b^2}{4}-a}\)
\(\Leftrightarrow\left(x-\frac{b}{2}\right)^2=\left(\frac{b^2}{4}-a\right)=\frac{b^2-4a}{4}\)
có nghiệm \(\Rightarrow b^2-4a\ge0\)
\(\hept{\begin{cases}x=\frac{b-\sqrt{b^2-4a}}{2}\\x=\frac{b+\sqrt{b^2-4a}}{2}\end{cases}}\)
Nghiệm nguyên \(b^2-4a=n^2.b^2\) Với n phải là số lẻ Đảm khi cộng(+) trừ(-) b ra số chẵn
\(\left(z+t\right)^2-4\left(xt\right)+4=n^2\left(z+t\right)^2\)
\(\left(z-t\right)^2+4=n^2\left(z+t\right)^2\)
\(\Leftrightarrow\left[n\left(z+t\right)\right]^2-\left(z-t\right)^2=4\)
Hiệu hai số CP =4 duy nhất có 4 và 0
\(\hept{\begin{cases}\left(z-t\right)^2=0\Rightarrow z=t\\\left[n\left(z+t\right)\right]^2=4\end{cases}}\Rightarrow dpcm\)
\(\frac{x}{y}=\frac{z}{t}\Rightarrow=\frac{x}{z}=\frac{y}{t}=\frac{2x}{2z}\Rightarrow\frac{2x^2}{2z^2}=\frac{y^2}{t^2}\)
\(\frac{2x^2}{2z^2}=\frac{y^2}{t^2}=\frac{2x^2-y^2}{2z^2-t^2}\)
\(^{\frac{y^2}{t^2}=\frac{y}{t}\cdot\frac{y}{t}=\frac{x}{z}\cdot\frac{y}{t}=\frac{xy}{zt}\left(1\right)}\)
\(\frac{y^2}{t^2}=\frac{2y^2-y^2}{2z^2-t^2}\left(2\right)\)
từ (1) và (2)=>\(\frac{xy}{zt}=\frac{2x^2-y^2}{2z^2-t^2}\left(đpcm\right)\)