Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(e.\dfrac{7}{10}\cdot\dfrac{-3}{5}+\dfrac{7}{10}\cdot\dfrac{-2}{5}-\dfrac{3}{10}\)
\(=\dfrac{7}{10}\cdot\left[\left(\dfrac{-3}{5}\right)+\left(\dfrac{-2}{5}\right)\right]-\dfrac{3}{10}\)
\(=\dfrac{7}{10}\cdot1-\dfrac{3}{10}=\dfrac{4}{10}=\dfrac{2}{5}\)
\(f.\dfrac{-3}{7}\cdot\dfrac{5}{9}+\dfrac{4}{9}\cdot\dfrac{-3}{7}+2\dfrac{3}{7}\)
\(=\dfrac{-3}{7}\cdot\left(\dfrac{5}{9}+\dfrac{4}{9}\right)+\dfrac{17}{3}\)
\(=\dfrac{-3}{7}\cdot1+\dfrac{17}{3}=\dfrac{-9}{21}+\dfrac{119}{21}=\dfrac{110}{21}\)
\(g.\dfrac{5}{9}\cdot\dfrac{10}{17}+\dfrac{5}{9}\cdot\dfrac{9}{17}-\dfrac{5}{9}\cdot\dfrac{2}{17}\)
\(=\dfrac{5}{9}\cdot\left(\dfrac{10}{17}+\dfrac{9}{17}-\dfrac{2}{17}\right)\)
\(=\dfrac{5}{9}\cdot1=\dfrac{5}{9}\)
Q=(2^9.3+2^9.5):2^12
Đặt A=2^9.3+2^9.5
A=2^9.(3+5)
A=2^9.8
Mặt khác:8=2^3
=>A=2^9.2^3
A=2^12
Theo đề bài ta có Q=(2^9.3+2^9.5):2^12
=>Q=2^12:2^12
Q=1
Nhìn dài dòng thế thôi chứ đơn giản lắm.Nếu thấy đúng thì cho mình nhé!
\(a,\frac{-1}{9}.\frac{15}{22}.\frac{-9}{25}\)
\(=\frac{-1.15.\left(-9\right)}{9.22.25}\)
\(=\frac{3}{110}\)
\(b,\frac{-2}{7}.\left(\frac{5}{13}-\frac{9}{15}\right)-\frac{2}{7}.\frac{8}{13}\)
\(=\frac{-2}{7}.\left(\frac{5}{13}+\frac{8}{13}-\frac{3}{5}\right)\)
\(=\frac{-2}{7}.\left(1-\frac{3}{5}\right)\)
\(=\frac{-2}{7}.\frac{2}{5}\)
\(=\frac{-4}{35}\)
\(c,\frac{3}{10}.\left(\frac{-4}{9}+\frac{2}{5}\right)-\frac{3}{10}.\left(\frac{5}{9}-\frac{3}{5}\right)\)
\(=\frac{3}{10}.\left[\left(\frac{-4}{9}+\frac{2}{5}\right)-\left(\frac{5}{9}-\frac{3}{5}\right)\right]\)
\(=\frac{3}{10}.\left(\frac{-4}{9}+\frac{2}{5}-\frac{5}{9}+\frac{3}{5}\right)\)
\(=\frac{3}{10}.\left[\left(\frac{-4}{9}-\frac{5}{9}\right)+\left(\frac{2}{5}+\frac{3}{5}\right)\right]\)
\(=\frac{3}{10}.\left(-1+1\right)\)
\(=\frac{3}{10}.0\)
\(=0\)
\(d,\frac{4}{11}-\frac{5}{13}+\frac{7}{11}-\frac{8}{13}\)
\(=\left(\frac{4}{11}+\frac{7}{11}\right)+\left(\frac{-5}{13}-\frac{8}{13}\right)\)
\(=1-1\)
\(=0\)
Học tốt
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{4}+...+\frac{1}{9}-\frac{1}{10}\)
= \(1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)
= \(1-\frac{1}{10}\)
=\(\frac{9}{10}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
=\(1-\frac{1}{11}\)
= \(\frac{10}{11}\)
c) đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)
\(\frac{1}{3}A\)=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{2}{3}A\)=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\frac{2}{3}A\)=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(\frac{10}{11}\)
A= \(\frac{10}{11}:\frac{2}{3}\)
A= \(\frac{10}{11}.\frac{3}{2}\)=\(\frac{15}{11}\)
d) giả tương tự câu c kết quả \(\frac{25}{11}\)
tổng đặc biệt đó bạn
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(1-\frac{1}{10}=\frac{9}{10}\)
những câu sau cũng áp dụng như vậy nhé
`(2^{9}.3+2^{9}.5):2^{10}`
`=2^{9}.(3+5):2^{10}`
`=2^{9}.8:2^{10}`
`=2^{9}.2^{3}:2^{10}`
`=2^{9+3}:2^{10}`
`=2^{12}:2^{10}=2^{2}=4`
(29 . 3 + 29 . 5) : 210
= 29 . (3 + 5) : 210
= 29 . 8 : 210
= 29 . 23 : 210
= 29 + 3 - 10
= 22 = 4
Chúc bạn học tốt.
😁😁😁