Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{10}{3^{11}}\)
\(\Rightarrow3M=\frac{1}{3}+\frac{2}{3^2}+...+\frac{10}{3^{10}}\)
\(\Rightarrow3M-M=\left(\frac{1}{3}+\frac{2}{3^2}+...+\frac{10}{3^{10}}\right)-\left(\frac{1}{3^2}+\frac{2}{3^3}+...+\frac{10}{3^{11}}\right)\)
\(\Rightarrow2M=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{10}}-\frac{10}{3^{11}}\)
Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{10}}\)
\(\Rightarrow3A=1+\frac{1}{3}+...+\frac{1}{3^9}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^9}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{10}}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^{10}}< 1\)
\(\Rightarrow2A< 1\)
\(\Rightarrow A< \frac{1}{2}\)
\(\Rightarrow2M< \frac{1}{2}-\frac{10}{3^{11}}\)
\(\Rightarrow M< \frac{\frac{1}{2}-\frac{10}{3^{11}}}{2}\)
\(\Rightarrow M< \frac{1}{4}-\frac{1}{2.3^{11}}< \frac{1}{4}\)
\(\Rightarrow M< \frac{1}{4}\left(đpcm\right)\)
Đặt \(S=\frac{1}{10^2}+\frac{1}{11^2}+\frac{1}{12^2}+.....+\frac{1}{2014^2}\)
Ta có : \(S< \frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+.....+\frac{1}{2013.2014}\\\)
Đặt \(A=\frac{1}{9.10}+\frac{1}{10.11}+....+\frac{1}{2013.2014}\\ =>A=\left(\frac{1}{9}-\frac{1}{10}\right)+\left(\frac{1}{10}-\frac{1}{11}\right)+......+\left(\frac{1}{2013}-\frac{1}{2014}\right)\\ =>A=\frac{1}{9}-\frac{1}{2014}\\ \)
Vậy A<\(\frac{1}{9}\)
Mà A>S =>S<\(\frac{1}{9}\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2\cdot2}< \dfrac{1}{1\cdot2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3\cdot3}< \dfrac{1}{2\cdot3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4\cdot4}< \dfrac{1}{3\cdot4}\)
...
\(\dfrac{1}{9^2}=\dfrac{1}{9\cdot9}< \dfrac{1}{8\cdot9}\)
\(\dfrac{1}{10^2}=\dfrac{1}{10\cdot10}< \dfrac{1}{9\cdot10}\)
\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A< 1-\dfrac{1}{10}\)
\(\Rightarrow A< \dfrac{9}{10}\)
\(\Rightarrow A< 1\) (vì: \(\dfrac{9}{10}< 1\))
\(\Leftrightarrow2-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{11}}\right)>0\)
Ta có: \(\frac{1}{2^{12}}-1=\left(\frac{1}{2}-1\right)\left(\frac{1}{2^{11}}+\frac{1}{2^{10}}+\frac{1}{2^9}+...+\frac{1}{2}+1\right)\)
\(\Rightarrow1+\frac{1}{2}+...+\frac{1}{2^{11}}=2\left(1-\frac{1}{2^{12}}\right)=2-\frac{1}{2^{11}}\)
\(\Rightarrow2-\left(1+\frac{1}{2}+...+\frac{1}{2^{11}}\right)=2-\left(2-\frac{1}{2^{11}}\right)=\frac{1}{2^{11}}>0\left(đpcm\right)\)
1-1/2-1/2^2-......-1/2^11
ta có:1-1/2-1/2^2-.....-1/2^11=1-(1/2+1/2^2+....+1/2^11)
A=1/2+1/2^2+1/2^3+...+1/2^11
2A=2.(1/2+1/2^2+1/2^3+...+1/2^11)
2A=2.1/2+2.1/2^2+....+2.1/2^11
2A-A=(1+1/2^2+1/2^3+...+1/2^10)-(1/2+1/2^2+1/2^3+....+1/2^11)
A=1-1/2^11=2048/2048-1/2048=2047/2048
vì 1-(1/2+1/2^2+1/2^3+...+1/2^11)=1-A
=> 1-(1/2+1/2^2+1/2^3+...+1/2^11)=1-2047/2048=2048/2048-2047/2048=1/2048=1/2^11
vậy 1-1/2-1/2^2-1/2^3-...-1/2^11=1/2^11