Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abc - cba
= 100a + 10b + c - 100c - 10b - a
= 99a - 99c
= 99(a - c)
Vì 99 chia hết cho 99 nên 99(a - c) chia hết cho 99 hay abc - cba chia hết cho 99
Vậy...
abc - cba
= 100a + 10b + c - 100c - 10b - a
= 99a - 99c
= 99(a - c)
Vì 99 chia hết cho 99 nên 99(a - c) chia hết cho 99 hay abc - cba chia hết cho 99
Vậy abc-cba chia het cho 99
a)
Ta có ab/abc là số có 2 chữ số CMR (chữ số hàng đơn vị khác 0).
Đặt ab = 10a + b và abc = 100a + 10b + c.
Theo đề bài, ta có phương trình:
(10a + b + 10b + a)/(100a + 10b + c) chia hết cho 11. (11a + 11b)/(100a + 10b + c) chia hết cho 11.
Điều này có nghĩa là 11a + 11b chia hết cho 100a + 10b + c.
Vì 11a + 11b = 11(a + b) và 100a + 10b + c = 11(9a + b) + c, ta có thể viết lại phương trình trên dưới dạng:
11(a + b) chia hết cho 11(9a + b) + c. Do đó, c chia hết cho 11.
Vậy, c là một số chia hết cho 11.
b)
Ta có abc - cba = 100a + 10b + c - (100c + 10b + a) = 99a - 99c = 99(a - c).
Vì 99(a - c) chia hết cho 99, ta có abc - cba chia hết cho 99.
abc - cba = (100a + 10b + c) - (100c + 10b + a) = 100a + 10b + c - 100c - 10b - a = 99a - 99c = 99(a - c) luôn chia hết cho 99
Vậy abc - cba chia hết cho 99
100a +10b +c - 100c - 10b - a = 99
99 (a -c) = 99
=> a -c =1
Vậy abc = {1b0 ; 2b1; 3b2 ; 4b3; 5b4; 6b5 ; 7b6 ; 8b7; 9b8 } với b thuộc {0 ;1;2;3;4;5;6;7;8;9}