K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2022

Điều kiện: \(2020x-2020\ge0\)

\(\Leftrightarrow x\ge1\)

Vậy là có thể bỏ hết dấu trị tuyệt đối được rồi. Làm tiếp thôi

18 tháng 12 2021

\(=\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+...+\dfrac{1}{x+2020}-\dfrac{1}{x+2022}\)

\(=\dfrac{x+2022-x}{x\left(x+2022\right)}=\dfrac{2022}{x\left(x+2022\right)}\)

19 tháng 12 2021

em cảm ơn vui

13 tháng 12 2022

Cứu với ;-;

14 tháng 9 2021

Từ giả thiết  ta có \(P\left(k\right).\left(k+1\right)=k\)  

Đặt  \(Q\left(x\right)=\left(x+1\right).P\left(x\right)-x\)

Khi đó \(Q\left(k\right)=\left(k+1\right).P\left(k\right)-k=0\) thỏa mãn với mọi \(k\in\left\{0;1;2;3;4;.............;2020\right\}\)

Theo định lý  Bézout ta có

\(Q\left(x\right)=x.\left(x-1\right).\left(x-2\right).\left(x-3\right)....\left(x-2020\right).R\left(x\right)\)

Vì đa thức  \(P\left(x\right)\) có bậc là 2020 nên đa thức \(Q\left(x\right)\)  có bậc là 2021.

Suy ra đa thức \(R\left(x\right)\) có bậc là 0 , hay còn gọi là đa thức \(R\left(x\right)\) không  chứa biến số.

Đặt  \(R\left(x\right)=a\)  với \(a\in R\)

Khi đó đa thức \(Q\left(x\right)\) có dạng như sau :

\(Q\left(x\right)=a.x.\left(x-1\right).\left(x-2\right).\left(x-3\right)....\left(x-2020\right)\)
Mặt khác , ta lại có 

\(Q\left(x\right)=\left(x+1\right).P\left(x\right)-x\)

Thay \(x=-1\) ta có \(Q\left(-1\right)=1\)

Suy ra                 \(a.\left(-1\right).\left(-2\right).\left(-3\right).\left(-4\right).....\left(-2021\right)=1\)

Suy  ra                       \(a=\dfrac{-1}{2021!}\)

Khi đó đa thức \(Q\left(x\right)\)  có dạng như sau :

\(Q\left(x\right)=\dfrac{-1}{2021!}.x.\left(x-1\right).\left(x-2\right).\left(x-3\right)....\left(x-2020\right)\) 

Mặt khác ta lại có  \(Q\left(x\right)=\left(x+1\right).P\left(x\right)-x\)  

Thay  \(x=2021\) ta có 

\(Q\left(2021\right)=2022.P\left(2021\right)-2021\)  

\(\Rightarrow\dfrac{-1}{2021!}.2021.2020.....1=2022.P\left(2021\right)-2021\)

\(\Rightarrow-1=2022.P\left(2021\right)-2021\) 

\(\Rightarrow P\left(2021\right)=\dfrac{1010}{1011}\)

 

19 tháng 5 2022

tự hỏi tự trả lời ????

 

13 tháng 3 2022

\(\dfrac{1}{x+1}\)-\(\dfrac{5}{x-2}\)=\(\dfrac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\)\(\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}\)-\(\dfrac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\)=\(\dfrac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\)x-2-5(x+1)=15

\(\Leftrightarrow\) x-2-5x-5=15

\(\Leftrightarrow\)x-5x=15+2+5

\(\Leftrightarrow\)-4x=22

\(\Leftrightarrow\)x=-\(\dfrac{11}{2}\)

vậy

13 tháng 3 2022

nhớ like nhahaha

5 tháng 10 2021

\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)

Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương

\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)

Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm

\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)

Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm

5 tháng 10 2021

2b,

Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp

Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt

vô đây đọc nhé

4 tháng 5 2019

ủa bạn j ơi chữ x chành bành ra trên đề kìa mà bạn bảo tìm làm j nữa

4 tháng 5 2019

đâu có đâu bạn ???

Mình dùng công cụ công thức của hoc24.vn mà

Bạn đợi chút nó sẽ load ra liền

10 tháng 5 2022

\(T=\dfrac{-2\left|x-2018\right|-2021}{2020+\left|x-2018\right|}\)

Để T lớn nhất thì \(2020+\left|x-2018\right|\) nhỏ nhất

Mà \(2020+\left|x-2018\right|\ge2020;\forall x\) 

--> \(Min=2020\) khi \(x=2018\)

Khi đó \(T=\dfrac{-2\left|2018-2018\right|-2021}{2020+\left|0\right|}=\dfrac{-2.0-2021}{2020}=-\dfrac{2021}{2020}\) 

--> \(Max_T=-\dfrac{2021}{2020}\) khi \(x=2018\)

P/s: hongg bt đúng hem nha:v

10 tháng 5 2022

$T=\frac{-2|x-2018|-2021}{2020+|x-2018|}=\frac{-2(|x-2018|+2020)+2019}{2020+|x-2018|}=-2+\frac{2019}{2020+|x-2018|}$

Lại có $|x-2018| \ge 0$ nên 

$T=-2+\frac{2019}{2020+|x-2018|} \le -2+\frac{2019}{2020}=-\frac{2021}{2020}$

Vậy $GTLN=-\frac{2021}{2020}$

Dấu $"="$ xảy ra khi và chỉ khi: $|x-2018|=0\Leftrightarrow x=2018$