Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A-A=\left(2^2+2^3+...+2^{21}\right)-\left(2+2^2+...+2^{20}\right)\)
\(A=2^{21}-2\)
B tương tự câu A
\(5C-C=\left(5^2+5^3+...+5^{51}\right)-\left(5+5^2+...+5^{50}\right)\)
\(C=\dfrac{5^{51}-5}{4}\)
\(3D-D=3+3^2+...+3^{101}-\left(1+3+...+3^{100}\right)\)
\(D=\dfrac{3^{101}-1}{2}\)
\(A=2^1+2^2+2^3+...+2^{20}\)
\(2\cdot A=2^2+2^3+2^4+...+2^{21}\)
\(A=2^{21}-2\)
\(B=2^1+2^3+2^5+...+2^{99}\)
\(4\cdot B=2^3+2^5+2^7+...+2^{101}\)
\(B=\)\(\left(2^{101}-2\right):3\)
\(C=5^1+5^2+5^3+...+5^{50}\)
\(5\cdot C=5^2+5^3+5^4+...+5^{51}\)
\(C=(5^{51}-5):4\)
\(D=3^0+3^1+3^2+...+3^{100}\)
\(3\cdot D=3^1+3^2+3^3+...+3^{101}\)
\(D=(3^{101}-1):2\)
a) \(2^5\cdot2^7\)
\(=2^{5+7}\)
\(=2^{12}\)
b) \(2^3\cdot2^2\)
\(=2^{3+2}\)
\(=2^5\)
c) \(2^4\cdot2^3\cdot2^5\)
\(=2^{4+3+5}\)
\(=2^{12}\)
d) \(2^2\cdot2^4\cdot2^6\cdot2\)
\(=2^{2+4+6+1}\)
\(=2^{13}\)
e) \(2\cdot2^3\cdot2^7\cdot2^4\)
\(=2^{1+3+7+4}\)
\(=2^{15}\)
f) \(3^8\cdot3^7\)
\(=3^{8+7}\)
\(=3^{15}\)
g) \(3^2\cdot3\)
\(=3^{2+1}\)
\(=3^3\)
h) \(3^4\cdot3^2\cdot3\)
\(=3^{4+2+1}\)
\(=3^7\)
I) \(3\cdot3^5\cdot3^4\cdot3^2\)
\(=3^{1+5+4+2}\)
\(=3^{12}\)
Lời giải chi tiết
12 1 13 12 – 02 (0 + 1)2 02 +12
22 1 + 3 23 32 – 12 (1 + 2)2 12 + 22
32 1 + 3 + 5 33 62 – 32 (2 + 3)2 22 + 32
43 102 – 62
GHGH3UG TRGGHJg ytg gjgdgfgh ẻughrkhfkjrthgh] ơyt]ơ ươ]y[ươ] ơ]m ơ]ơ] ơu]y[ ưu[y ưuy[ ưu[y] y[ợ]uợ]uợ]uợu]j[u]j[u]j[u]j[u]j[u]j[u]ơu]j[ựu[ụ]uợ]uơ]uợu] uhyiuu5yturyytytyytyytty8ytytytytyty58yt85yt85y8ty85yt85y8ty58yt85yt85yt85y8t5yt8y58ty58yt85yt85yt85y58tyyyr5ybtyurygytbgbrbvtterytiburbyvfudytubertuygtdrtuufutydiytuiydyiuyuityurdyiutyruytiurdyuitiurtuyrdytuiyryritrybtiyryrtiutybbirybtreybruiiurytryvui
a) 2A = 2 + 2^2 + 2^3 +...+ 2^11
2A-A = (2 + 2^2 + 2^3 +...+ 2^11) - (1 + 2 + 2^2 +...+ 2^10)
A = 2^11 - 1
b) 3B = 3 + 3^2 + 3^3 +...+ 3^101
3B-B = (3 + 3^2 + 3^3 +...+ 3^101) - (1 + 3 + 3^2 +...+ 3^100)
2B = 3^101 - 3
B = \(\frac{\text{3^101 - 3}}{2}\)
5:
a: \(3^{2n}=\left(3^2\right)^n=9^n\)
\(\left(2^{3n}\right)=\left(2^3\right)^n=8^n\)
=>\(3^{2n}>2^{3n}\)
b: \(199^{20}=\left(199^4\right)^5=1568239201^5\)
\(2003^{15}=\left(2003^3\right)^5=8036054027^5\)
mà \(1568239201< 8036054027\)
nên \(199^{20}< 2003^{15}\)
4: \(100< 5^{2x-1}< 5^6\)
mà \(25< 100< 125\)
nên \(125< 5^{2x-1}< 5^6\)
=>3<2x-1<6
=>4<2x<7
=>2<x<7/2
mà x nguyên
nên x=3
Giúp mình đi mình đang cần gấp
5. mình không hiểu bạn ghi j luôn