K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

a)\(P=x^2+4x+2xy+3y^2+5y+2017\)

\(=x^2+2xy+y^2+4y+4+4x+2y^2+y+\dfrac{1}{8}+\dfrac{16103}{8}\)

\(=\left(x+y+2\right)^2+2\left(y^2+\dfrac{y}{2}+\dfrac{1}{16}\right)+\dfrac{16103}{8}\)

\(=\left(x+y+2\right)^2+2\left(y+\dfrac{1}{4}\right)^2+\dfrac{16103}{8}\ge\dfrac{16103}{8}\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=-\dfrac{7}{4}\\y=-\dfrac{1}{4}\end{matrix}\right.\)

b)\(Q=-x^2+4x-3y^2+6y+2017\)

\(=-x^2+4x-4-3y^2+6y+3+2024\)

\(=-\left(x^2-4x+4\right)-\left(3y^2-6y-3\right)+2024\)

\(=-\left(x-2\right)^2-3\left(y^2-2y-1\right)+2024\)

\(=-\left(x-2\right)^2-3\left(y-1\right)^2+2024\ge2024\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

23 tháng 6 2017

Ta có:

\(P=x^2+4x+2xy+3y^2+5y+2017\)

\(=x^2+2x\left(y+2\right)+\left(y+2\right)^2+2y^2+y+2013\)

\(=\left[x+\left(y+2\right)\right]^2+2\left(y^2+y+0,25\right)+2012,5\)

\(=\left(x+y+2\right)^2+2\left(y+0,5\right)^2+2012,5\ge2012,5\)

Dấu "=" xảy ra khi:

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2=0\\y+0,5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-0,5\\x=-1,5\end{matrix}\right.\)

Vậy \(minP=2012,5\) khi \(\left\{{}\begin{matrix}y=-0,5\\x=-1,5\end{matrix}\right.\)

Ta có:

\(Q=-x^2+4x-3y^2+6y+2017\)

\(=-\left(x^2-4x+4\right)-3\left(y^2-2y+1\right)+2024\)

\(=-\left(x-2\right)^2-3\left(y-1\right)^2+2024\le2024\)

Dấu "=" xảy ra khi \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy \(maxQ=2024\) khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

\(4x^2+3y^2-4x+30y+78=0\)

=>\(\left(4x^2-4x+1\right)+3\left(y^2+10y+25\right)+2=0\)

=>\(\left(2x-1\right)^2+3\left(y+5\right)^2+2=0\)(vô lý)

=>\(\left(x,y\right)\in\varnothing\)

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

19 tháng 5 2017

câu A thiếu đề

B=\(x^2-2x+2017=\left(x-1\right)^2+2016>=2016\)

Min B=2016 khi x-1=0<=>x=1

+)D=\(-2x^2+4x+2017=-2\left(x^2-2x+1\right)+2019=-2\left(x-1\right)^2+2019< =2019\)

=>Max D=2019, dấu '=' xảy ra khi x-1=0<=>x=1

19 tháng 5 2017

Bổ sung câu A. \(A=x^2+2xy+3y^2-4y+2017\)

21 tháng 11 2018

\(4x^2+3y^2-4x+30y+78\)

\(=\left(2x\right)^2-2\cdot2x\cdot1+1^2+3y^2+30y+75+2\)

\(=\left(2x-1\right)^2+3\left(y^2+2\cdot y\cdot5+5^2\right)+2\)

\(=\left(2x-1\right)^2+3\left(y+5\right)^2+2\ge2>0\)

=> đẳng thức ko thể bằng 0

=> đpcm

21 tháng 11 2018

\(4x^2+3y^2-4x+30y+78=0\)

\(=4x^2-4x+1+3y^2+30y+75+2\)

\(=(4x^2-4x+1)+3(y^2+10y+25)+2\)

\(=(2x-1)^2+3(y+5)^2+2>0\)với mọi x

=> không có x,y nào thỏa mãn

P/S : Bài này chứng minh hay sao?

3 tháng 4 2020

\(D=\frac{4x+3}{x^2+1}\)

Min D : 

\(D=\frac{x^2+4x+4-x^2-1}{x^2+1}\)

\(=\frac{\left(x+2\right)^2-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)

Ta thấy : \(\frac{\left(x+2\right)^2}{x^2+1}\ge0\forall x\)

\(\Rightarrow D\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1\)

Dấu "=" xảy ra khi \(x+2=0\Leftrightarrow x=-2\)

Max D : 

\(D=\frac{4x+3}{x^2+1}=\frac{-4x^2+4x-1+4x^2+4}{x^2+1}\)

\(=\frac{-\left(2x-1\right)^2+4\left(x^2+1\right)}{x^2+1}\)

\(=\frac{-\left(2x-1\right)^2}{x^2+1}+4\)

Ta thấy : \(\frac{-\left(2x-1\right)^2}{x^2+1}\le0\forall x\)

\(\Rightarrow D=\frac{-\left(2x-1\right)^2}{x^2+1}+4\le4\)

Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)