K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\dfrac{AE}{AB}=\dfrac{2}{5}\)

\(\dfrac{AF}{AC}=\dfrac{4}{10}=\dfrac{2}{5}\)

Do đó: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)\(\left(=\dfrac{2}{5}\right)\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{A}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

Suy ra: \(\dfrac{AE}{AB}=\dfrac{EF}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{2}{5}=\dfrac{EF}{12}\)

hay EF=4,8(cm)

Vậy: EF=4,8cm

12 tháng 3 2023

loading...  

a: Xét ΔABC và ΔAED có

AB/AE=AC/AD

góc A chung

=>ΔABC đồng dạng vơi ΔAED

b: EF//AB

=>EF/AB=CE/CA

=>EF/18=5/8

=>EF=90/8=11,25(cm)

BF/FC=AE/EC=3/5

7 tháng 9 2017

21 tháng 3 2021

B A C 9 12 E F

a, Ta có : \(\frac{BE}{BC}=\frac{BF}{BA}\Rightarrow\frac{BE}{BF}=\frac{BC}{AB}=\frac{12}{9}\)

Vậy \(\frac{BE}{BC}=\frac{BF}{BA}=\frac{12}{9}=\frac{4}{3}\)

b, Xét tam giác BAF và tam giác BCE ta có : 

^B _ chung 

\(\frac{BE}{BC}=\frac{BF}{BA}=\frac{3}{4}\)( cmt )

Vậy tam giác BAF ~ tam giác BCE ( c.g.c )

21 tháng 3 2021

Sửa hộ \(\frac{BA}{BC}=\frac{BF}{BE}=\frac{4}{3}\)

do \(\frac{BE}{BC}=\frac{BF}{BA}\Rightarrow\frac{BA}{BC}=\frac{BF}{BE}\)

12 tháng 2 2017

14 tháng 2 2020

A B C E F K

a) Ta có :

\(\frac{AE}{AB}=\frac{1,5}{6}=\frac{1}{4}\)

\(\frac{AF}{AC}=\frac{2}{8}=\frac{1}{4}\)

\(\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)

\(\Rightarrow EF//BC\)(Theo định lí Ta-lét đảo)

b)Áp dụng định lí Pythagoras vào △ABC vuông tại A :

         BC2 = AB2 + AC2

\(\Rightarrow\)BC2 = 62 + 82

\(\Rightarrow\)BC2 = 100

\(\Rightarrow\)BC   = 10 cm

Xét △ABC có : MN // BC

\(\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}=\frac{EF}{BC}\)(Hệ quả định lí Ta-lét)

\(\Rightarrow\frac{EF}{BC}=\frac{1}{4}\)

\(\Rightarrow EF=\frac{1}{4}BC=\frac{1}{4}\cdot10=2,5\left(cm\right)\)

c) Xét △KBC có EF // BC

\(\Rightarrow\frac{KB}{KF}=\frac{KC}{KE}\)(Theo định lí Ta-lét)

\(\Rightarrow KE.KB=KF.KC\)