Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)
\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)
\(đếnđâytịt\)
b
c, =3 dễ
\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn nhân biểu thức lên 2 lần (mình đặt là A nên nhân 2 lần là 2A)
Nhóm theo hằng đảng thức ta được (x-y)^2 +(x-2)^2 +(y-2)^2 +10
Bạn chứng minh nó luôn lớn hơn hoặc bằng 10 với mọi x,y vì mỗi bình phương luôn lớn hơn 0 và công 10 nên lớn hơn hoặc bằng 10 => 2A>=10 => A>= 5
Dấu bằng xảy ra khi và chỉ khi x=y=2
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a )
\(A=xy\left(3x^2-6xy\right)-3\left(x^3y-2x^2y^2-1\right)\)
\(\Leftrightarrow A=3x^3y-6x^2y^2-3x^3y+6x^2y^2+3\)
\(\Leftrightarrow A=3\)
\(\Leftrightarrow A\)ko phụ thuộc vào g/t của biến
b )
\(B=\left(x-9\right)\left(x-9\right)+\left(2x+1\right)^2-\left(5x-4\right)\left(x-2\right)\)
\(\Leftrightarrow B=x^2-2.x.9+9^2+\left(2x\right)^2+2.2x.1+1-\left[5x^2-4x-10x+8\right]\)
\(\Leftrightarrow B=x^2-18x+81+4x^2+4x+1-5x^2+4x+10x-8\)
\(\Leftrightarrow B=\left(x^2+4x^2-5x^2\right)+\left(-18x+4x+4x+10x\right)+\left(81-8+1\right)\)
\(\Leftrightarrow B=74\)
\(\Leftrightarrow B\)ko phụ thuộc vào g/t của biến
bài này ng ra de IQ<70 chờ kẻ IQ<70 LÀM
cái thằng ở trên bị thiểu năng