Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CM: \(a=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}\Rightarrow a+\frac{\sqrt{2}}{8}=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}\)
\(\Leftrightarrow\left(a+\frac{\sqrt{2}}{8}\right)^2=\left(\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}\right)^2\)\(\Leftrightarrow a^2+\frac{a\sqrt{2}}{4}+\frac{1}{32}=\frac{1}{4}\left(\sqrt{2}+\frac{1}{8}\right)\Leftrightarrow a^2+\frac{2\sqrt{a}}{4}+\frac{1}{32}=\frac{\sqrt{2}}{4}+\frac{1}{32}\)
\(\Leftrightarrow4a^2+\sqrt{2}a-\sqrt{2}=0\)
Theo trên: \(4a^2+\sqrt{2}a-\sqrt{2}=0\Rightarrow a^2=\frac{\sqrt{2}\left(1-a\right)}{4}\Rightarrow a^4=\frac{a^2-2a+1}{8}\)
\(\Rightarrow a^4+a+1=\frac{a^2-2a+1}{8}+a+1=\left(\frac{a+3}{2\sqrt{2}}\right)^2\)
\(B=a^2+\sqrt{a^4+a+1}=a^2+\frac{a+3}{2\sqrt{2}}=\frac{2\sqrt{2}a^2+a+3}{2\sqrt{2}}\)\(=\frac{4a^2+\sqrt{2}a+3\sqrt{2}}{4}=\frac{4\sqrt{2}}{4}=\sqrt{2}\)
Bài 1
a) \(P=\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\) (ĐK : x\(\ge0\) ; x\(\ne\) 1)
\(=\frac{3a+\sqrt{9a}-3}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\)
\(=\frac{3a+\sqrt{9a}-3-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{3a+\sqrt{9a}-3-a+1-a+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)
b) \(P=\frac{\sqrt{a}+1}{\sqrt{a}-1}=\frac{\sqrt{a}-1+2}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)
Vậy để P là số nguyên thì: \(\sqrt{a}-1\inƯ\left(2\right)\)
Mà Ư(2)={-1;1;2;-1}
=> \(\sqrt{a}-1\in\left\{1;-1;2;-2\right\}\)
Ta có bảng sau:
\(\sqrt{a}-1\) | 1 | -1 | 2 | -2 |
a | 4 | 0 | 9 | \(\sqrt{a}=-1\) (ktm) |
vậy a={0;4;9} thì P nguyên
Bài 2
\(P=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)(ĐK:a\(\ge\)8)
\(=\frac{\sqrt{\left(a-4\right)+4\sqrt{a-4}+4}+\sqrt{\left(a-4\right)-4\sqrt{a-4}+4}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)
\(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{1-\frac{4}{a}}\)
\(=\sqrt{a-4}+2+\sqrt{a-4}-2:\frac{a-4}{a}\)
\(=2\sqrt{a-4}\cdot\frac{a}{a-4}\)
\(=\frac{2a}{\sqrt{a-4}}\)
Ta co:
\(a^2=\frac{1}{4}\left(\sqrt{2}+\frac{1}{8}\right)-\frac{\sqrt{2}}{8}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{1}{32}\)
\(=\frac{\sqrt{2}}{4}-\frac{\sqrt{2}}{8}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{1}{16}\)
\(\Rightarrow\sqrt{8}a^2=1-\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{\sqrt{8}}{16}\)
Ta lại co:
\(8a+\sqrt{2}=4\sqrt{\sqrt{2}+\frac{1}{8}}\)
\(\Leftrightarrow64a^2+16\sqrt{2}a+2=16\sqrt{2}+2\)
\(\Leftrightarrow2\sqrt{2}a^2=1-a\)
\(\Leftrightarrow8a^4=a^2-2a+1\)
Từ đề bài co:
\(\sqrt{8}M=\sqrt{8}a^2+\sqrt{8a^4+8a+8}\)
\(=\sqrt{8}a^2+\sqrt{a^2-2a+1+8a+8}\)
\(=\sqrt{8}a^2+a+3\)
\(=1-\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{\sqrt{8}}{16}+\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}+3\)
\(=4\)
\(\Rightarrow M=\sqrt{2}\)
1) Khi x = 49 thì:
\(A=\frac{4\sqrt{49}}{\sqrt{49}-1}=\frac{4\cdot7}{7-1}=\frac{28}{6}=\frac{14}{3}\)
2) Ta có:
\(B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}\)
\(B=\frac{\sqrt{x}-1+x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
c) \(P=A\div B=\frac{4\sqrt{x}}{\sqrt{x}-1}\div\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{4\sqrt{x}}{\sqrt{x}+1}\)
Ta có: \(P\left(\sqrt{x}+1\right)=x+4+\sqrt{x-4}\)
\(\Leftrightarrow\frac{4\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=x+4+\sqrt{x-4}\)
\(\Leftrightarrow4\sqrt{x}=x+4+\sqrt{x-4}\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x-4}=0\)
Mà \(VT\ge0\left(\forall x\ge0,x\ne1\right)\)
\(\Rightarrow\hept{\begin{cases}\left(\sqrt{x}-2\right)^2=0\\\sqrt{x-4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}=2\\x-4=0\end{cases}}\Rightarrow x=4\)
Vậy x = 4