Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A=1/1.2 + 1/2.3 + + 1/ 3.4+...+1/49.50 ; B = 1.2+2.3+3.4+4.5+5.6+...+49.50
Tính 50 mủ 2 A – B/17
A=2(1-3)+4(5-3)+ 6(5-7)+...+50(49-57)
A=-4-8-12-...-100 = -(4+8+12+...+100) (tính tổng cấp số cộng)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\) (đpcm)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
\(\Rightarrow\) Quy đồng phân số và 1 là : \(\frac{49}{50}\) và \(1\)
Giữ nguyên phân số \(\frac{49}{50}\)
Ta có : \(\frac{1}{1}=\frac{1.50}{1.50}=\frac{50}{50}\)
\(\Rightarrow\frac{49}{50}< \frac{50}{50}\left(đpcm\right)\)
đặt A = 1.2. + 2.3 + 3.4 + ... + 49.50
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 49.50.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 49.50.(51 - 48)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 49.50.51 - 48.49.50
3A = 49.50.51
A = 41650
Thay vào ta được
41650 + 1/2x = 40642
=> 1/2x = 1008
=> x = 2016
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
\(B=1.2+2.3+3.4+...+49.50\)
\(3B=1.2.3+2.3.3+3.4.3+...+49.50.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)
\(=49.50.51\)
\(B=\frac{49.50.51}{3}=49.50.17\)
\(50^2.A-\frac{B}{17}=49.50-49.50=0\)
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 32.33
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 32.33.34
=> 3S = 32.33.34
=> S = \(\frac{32.33.34}{3}=11968\)
ta có : 1/1.2+1/2.3+1/3.4+1/4.5+....+1/49.50
= 1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.....+1/49-1/50
=1/1-1/50
= 49/50
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{1}-\frac{1}{50}\)
\(=\frac{49}{50}\)
A = 1.2 + 2.3 + ........+49.50
3A = 1.2.(3-0) + 2.3.(4-1)+........+49.50.(51 - 48)
3A = 1.2.3 + 2.3.4 - 1.2.3 +........ + 49.50.51 - 48.49.50
3A = 48.49.50 = 117600
A = 39200
Ta có :
Gọi A=1.2+2.3+3.4+4.5+...+49.50
A=1.2+2.3+3.4+4.5+...+49.50
3.A=3.(1.2+2.3+3.4+4.5+...+49.50)
3.A=1.2.3+2.3.3+3.3.4+3.4.5+...+3.49.50
3.A=1.2.(3-0)+2.3.(3-0)+(3-0).3.4+(3-0).4.5+...+(3-0).49.50
3.A=1.2.3-0+2.3.3-0+3.3.4-0+3.4.5-0+...+3.49.50-0
3.A=1.2.3-0+2.3.4-1.2.3+5.3.4-2.3.4+...+49.50.51-48.49.50
3.A=49.50.51
A= 49.50.51/3
A= 49.50.17.3/3
A=49.50.17
A=41650
Đáp số : A=41650
A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
=\(1-\frac{1}{50}\)
Vì \(1-\frac{1}{50}< 1\)nên A < 1
B = \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=\(\frac{1}{2}-\frac{1}{100}\)
Vì \(\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)nên B < \(\frac{1}{2}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(\Rightarrow A< 1\)
\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=\frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow B< \frac{1}{2}\)