Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: f(x)=-3
<=>x5-2x2+x4-x5+3x2-x4-3+2x=-3
<=>(x5-x5)+(-2x2+3x2)+(x4-x4)+2x-3=-3
<=>x2+2x-3=-3
<=>x2+2x=0
<=>x(x+2)=0
<=>x=0 hoặc x+2=0
<=>x=0 hoặc x=-2
Vậy..........
b)đa thức f(x) có nghiệm
<=>f(x)=0
<=>x2+2x-3=0
<=>x2+3x-x-3=0
<=>x(x+3)-(x+3)=0
<=>(x-1)(x+3)=0
<=>x-1=0 hoặc x+3=0
<=>x=1 hoặc x=-3
Vậy nghiệm của đa thức f(x) là x=-3;x=1
Tìm x biết:
a) 3x-|2x+1|=2
b)2.|5x-3|-2x=14
c)|x+1|+|x+2|+|x+3|=4x
d)|x-2|+|3-2x|=2x+1
e)|x-3|=(-2).|x+4|
a) |2x-2|=|2x+3|
TH1: 2x-2=2x+3
=> 2x-2=2x-2+5 ( vô lý )
=> Không tồn tại x
TH2: 2x-2=-2x-3
=> 2x+2x+3=2
=> 4x=-1
=> x=-1/4
Vậy: x=-1/4
b) \(A=\frac{1}{\sqrt{x-2}+3}\)
Để A đạt giá trị lớn nhất thì \(\sqrt{x-2}+3\) phải đạt giá trị nhỏ nhất
Có: \(\sqrt{x-2}\ge0\Rightarrow\sqrt{x-2}+3\ge3\)
Dấu = xảy ra khi x=2
Vậy: \(Max_A=\frac{1}{3}\) tại x=2
c) Có: \(\frac{2x+1}{x-2}< 2\Rightarrow\frac{2x+1}{x-2}-2< 0\)
\(\Rightarrow\frac{2x+1}{x-2}-\frac{2\left(x-2\right)}{x-2}< 0\)
\(\Rightarrow\frac{2x+1-2x+4}{x-2}< 0\)
\(\Rightarrow\frac{5}{x-2}< 0\)
\(\Rightarrow x< 2\)
a)
|2x-2| = |2x+3|
<=> \(\left[\begin{array}{nghiempt}2x-2=2x+3\\2x-2=-2x-3\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}0x=5\left(vl\right)\\4x=-1\end{array}\right.\)
<=> x = \(-\frac{1}{4}\)
TH1 : \(x< -\frac{3}{2};\)ta có:
\(-\left(2x+3\right)=x+2\)
\(-2x-3=x+2\)
\(-2x=x+5\)
\(-2x-x=5\)
\(-3x=5\)
\(x=-\frac{5}{3}\)(thỏa mãn )
TH2 : \(x\ge-\frac{3}{2};\)ta có:
\(2x+3=x+2\)
\(2x-x=2-3\)
\(x=-1\)(thỏa mãn)
Vì \(\left|2x+3\right|=x+2\)\(\Rightarrow\hept{\begin{cases}2x+3=x+2\\2x+3=-\left(x+2\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x-x=2-3\\2x+3=-x-2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-1\\2x+x=-2-3\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\3x=-5\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\x=-\frac{5}{3}\end{cases}}\)
Vậy \(x\in\left\{-\frac{5}{3};-1\right\}\)