Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
1)(x-3)(y+2)=-6
Ta xét bảng sau:
x-3 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
x | 4 | 5 | 6 | 9 | 2 | 1 | 0 | -3 |
y+2 | -6 | -3 | -2 | -1 | 6 | 3 | 2 | 1 |
y | -8 | -5 | -4 | -3 | 4 | 1 | 0 | -1 |
2)(5-x)(4-y)=-5
Ta xét bảng sau:
5-x | 1 | 5 | -1 | -5 |
x | 4 | 0 | 6 | 10 |
4-y | -5 | -1 | 5 | 1 |
y | 9 | 5 | -1 | 3 |
3)4) tương tự
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
1.
\(\left(\frac{3}{1\times3}+\frac{3}{3\times5}+\frac{3}{5\times7}+...+\frac{3}{97\times99}\right)-x:\frac{3}{2}=\frac{7}{3}\\
\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{97\times99}\right):\frac{3}{2}-x:\frac{3}{2}=\frac{7}{3}\\\left[\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-x\right]:\frac{3}{2}=\frac{7}{3}\\
\left(1-\frac{1}{99}\right)-x=\frac{7}{3}\times\frac{3}{2}\\
\frac{98}{99}-x=\frac{7}{2}\\
x=\frac{98}{99}-\frac{7}{2}=\frac{-497}{198}\)
2.\(\frac{x}{y}=\frac{4}{3}\Rightarrow\hept{\begin{cases}x=4a\\y=3a\\x-y=4a-3a=a\end{cases}}\\ \left(x-y\right)^{2015}=5^{2015}\Rightarrow x-y=5\\ \Rightarrow a=5\Rightarrow\hept{\begin{cases}x=4\times5=20\\y=3\times5=15\end{cases}}\)
Ta có:
\(\frac{x}{3}=\frac{y}{4}\)=>\(\frac{3x}{9}=\frac{4y}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{9}=\frac{4y}{16}=\frac{3x+4y}{9+16}=\frac{5}{25}=\frac{1}{5}\)
=>\(\frac{x}{3}=\frac{1}{5}\)=>\(x=\frac{1}{5}.3=\frac{3}{5}\)
\(\frac{y}{4}=\frac{1}{5}\)=>\(y=\frac{1}{5}.4=\frac{4}{5}\)
Vậy \(x=\frac{3}{5};y=\frac{4}{5}\)
b)Ta có :
\(\frac{x}{4}=\frac{y}{5}\)=>\(\frac{2x}{8}=\frac{3y}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{2x}{8}=\frac{3y}{15}=\frac{2x-3y}{8-15}=\frac{4}{-7}\)
=>\(\frac{x}{4}=\frac{-4}{7}\)=>\(x=\frac{-4}{7}.4=\frac{-16}{7}\)
\(\frac{y}{5}=\frac{-4}{7}\)=>\(x=\frac{-4}{7}.5=\frac{-20}{7}\)
Vậy \(x=\frac{-16}{7};y=\frac{-20}{7}\)
a) \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow3y=4x\Leftrightarrow x=\frac{3y}{4}\)
Thay \(x=\frac{3y}{4}\)vào biểu thức \(3x+4y=5\);ta được : \(\frac{3y}{4}+4y=5\)
\(\Leftrightarrow3y+4y.4=5.4\Leftrightarrow3y+16y=20\Leftrightarrow19y=20\Leftrightarrow y=\frac{20}{19}\)
Vì \(y=\frac{20}{19}\Rightarrow x=\frac{\frac{3.20}{19}}{4}=\frac{15}{19}\)
Vậy .................
\(\frac{x}{4}=\frac{y}{3}\)
\(\Rightarrow\frac{x+y}{4+3}=\frac{x}{4}=\frac{y}{3}\) mà x + y = 14
\(\Rightarrow\frac{14}{7}=\frac{x}{4}=\frac{y}{3}\)
\(\Rightarrow2=\frac{x}{4}=\frac{y}{3}\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot4=8\\y=2\cdot3=6\end{cases}}\)
\(x=1;y=4\)