K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

a)dung

b)dung

7 tháng 7 2016

a)Ta có 2 số tự nhiên liên tiếp có dạng a; a+1

Nếu a ko chia hết cho 2 thì a+1 chia hết cho 2 và ngược lại 

b) Ta có 3 số tự nhiên liên tiếp có dạng a ; a+1 ; a+2 

Nếu a ko chia hết cho 3 => a+1 hoặc a+2 chia hét cho 3 

=> đpcm

21 tháng 11 2015

a)

gọi 3 STN liên tiếp là a ;a+1;a+2

=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3

=> .. có

b)

gọi 4 STN liên tiếp là a;a+1;a+2;a+3

=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6

=> ko chia hết cho 4

 

 

27 tháng 8 2021

a, 

Gọi hai số tự nhiên liên tiếp là a và a + 1

Nếu a chia hết cho 2 thì bài toán được chứng minh.

Nếu a không chia hết cho 2 thì a = 2k + 1 (k∈N)

Suy ra: a + 1 = 2k + 1 + 1 = 2k + 2

Ta có: 2k ⋮ 2; 2 ⋮ 2

Suy ra: (2k + 2) ⋮ 2 hay (a + 1) ⋮ 2

Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2

Mik chỉ làm được câu a thôi nhưng vẫn mong bạn ủng hộ ^-^

27 tháng 7 2017

a) hai số liên tiếp thì sẽ có 1 số chẵn và  1 số lẻ , số chẵn là số chia hết cho 2 nên trong hai số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2

3 tháng 8 2019

a) Vì có 1 số chẵn và 1 số lẻ trong 2 số tự nhiên liên tiếp nên chia hết cho 2 

b) Trong 3 số tự nhiên liên tiếp thì có số cộng các chữ số của số đó chia hết cho3 

c) Tổng 2 số tự nhiên liên tiếp là chẵn + lẻ = lẻ nên ko chia hết cho 2 

d) 3 số tự nhiên liên tiếp thì có 1 số chia 3 dư 1 , 1 số chia 3 dư 2 , 1 số chia hết cho 3 nên lấy số dư là 1+2=3 chia hết cho 3 nên tổng 3 số tự nhiên liên tiếp chia hết cho 3

14 tháng 12 2017

https://olm.vn/hoi-dap/question/118678.htm  Ok nha Giờ bn giúp mk làm bài toán hình học lớ 6 đc k

27 tháng 9 2015

a, hai số tự nhiên liên tiếp có 1 số chẵn và 1 số lẻ nên chắc chắn số chẵn chia hết cho 2
c, gọi 3 số tự nhiên liên tiếp là n , n+1 , n+2
ta có n+n+1+n+2 = 3n+3 chia hết cho 3
còn câu d bn làm tương tự ok

26 tháng 7 2016

Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N ) 

Ta xét 3 trường hợp :

TH1: a chia cho 3 dư 0

Suy ra : a chia hết cho 3

TH2: a chia cho 3 dư 1 

Ta có : a = 3q + 1

a + 2 = 3q +1 + 2

a + 2 = 3q + 3

a + 2 = 3q + 3 .1

a + 2 = 3.(q + 1 )

Suy ra : a +2 chia hết cho 3 

TH3 : a chia cho 3 dư 2

Ta có : a = 3q + 2

a + 1 = 3q +2 + 1

a + 1 = 3q + 3

a + 1 = 3q + 3 .1

a + 1 = 3.(q + 1)

Suy ra : a + 1 chia hết cho 3 

Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3 .

Trong 2 số tự nhiên liên tiếp là a và a+1

TH1 : a không chia hết cho 2 (số lẻ)

=> a + 1 chia hết cho 2

TH2 : a + 1 không chia hết cho 2

=> a - 1 (hay a) chia hết cho 2

26 tháng 7 2016

a) Gọi 2 số tự nhiên liên tiếp là n,n + 1(n N)

Nếu n chia hết cho 2 thì ta có điều cần chứng tỏ

Nếu n = 2k + 1 thì n + 1 = 2k +2 chia hết cho 2

b)Gọi 2 số tự nhiên liên tiếp là:n,n+1,n+2(n N)

Ta có n + (n +1)+(n+2) = 3n +3 chia hết cho 3(vì 3n chia hết cho 3 và 3 chia hết  cho 3)

 
11 tháng 10 2017

a,   Nếu \(a⋮2\Rightarrow\)có 1 số chia hết cho 2

 Nếu a ko chia hết cho 2 =>a là số lẻ

             a=2k+1

=>a+1=(2k+1)+1

=>2k+2chia hết cho 2(vì 2k chia hết cho 2 và 2 cũng chia hết cho 2)

b,     Nếu a chia hết cho 3=> có 1 số chia hết cho 3

        Nếu a=3k+1 thì =>a+2=3k+3, chia hết cho 3

                 nếu a=3k+2 thì

        =>a+1=3k+3, chia hết cho 3.

11 tháng 10 2017

A) Gọi 2 số tự nhiên liên tiếp là n,n +1(n thuộc N)

Nếu nguyễn chia hết cho 2 thì ta có điều chứng tỏ 

Nếu = 2k + 1 thì 2 + 1 = 2k +2 chia hết cho 2

B) 

Nếu n chia hết cho 2 thì ta có điều cần chứng tỏ

Nếu n = 2k + 1 thì n + 1 = 2k +2 chia hết cho 2

b)Gọi 2 số tự nhiên liên tiếp là:n,n+1,n+2(n