Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM:
$y\sqrt{x-1}=\sqrt{y^2(x-1)}=\sqrt{y(xy-y)}\leq \frac{y+xy-y}{2}=\frac{xy}{2}$
$x\sqrt{y-2}=\sqrt{x^2(y-2)}=\sqrt{x(xy-2x)}\leq \frac{2x+(xy-2x)}{2\sqrt{2}}=\frac{xy}{2\sqrt{2}}$
$\Rightarrow y\sqrt{x-1}+x\sqrt{y-2}\leq \frac{xy}{2}+\frac{xy}{2\sqrt{2}}=xy.\frac{2+\sqrt{2}}{4}$
$\Rightarrow P\leq \frac{2+\sqrt{2}}{4}$
Vậy $P_{\max}=\frac{2+\sqrt{2}}{4}$
\(\sqrt{2000}\)=\(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(\Rightarrow2000=x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\)
=\(x^2y^2+1+x^2+y^2+x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(\Rightarrow x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2000-1=1999\)
ma \(S^2=x^2\left(1+y^2\right)+y^2\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
=\(x^2+x^2y^2+y^2+x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
=\(x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\) =\(1999\Rightarrow S=\sqrt{1999}\)