Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{49.50}\)
\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{49}-\frac{1}{50}\)
\(M=\frac{1}{1}-\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+........+\left(-\frac{1}{49}+\frac{1}{49}\right)-\frac{1}{50}\)
\(M=\frac{1}{1}-0+0+0+0+0+......+0+0-\frac{1}{50}\)
\(M=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Vì \(\frac{49}{50}<1\) nên \(S<1\)
M=1/1.2+1/2.3+...+1/49.50
M=1/1-1/2+1/2-1/3+.....+1/49-1/50
M=1-1/50<1
=>M<1
\(M=\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{49.50}\)
\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(M=1-\frac{1}{50}<1\)
\(=>M<1\)
M = 1/1.2 + 1/2.3 + ... + 1/49.50
M = 1 - 1/2 + 1/2 - 1/3 + ... + 1/49 - 1/50
M = 1 - 1/50
M = 49/50
Mà M = 49/50 nên M < 1
Vậy : M < 1
M = 1/1.2 + 1/2.3 +...+1/49.50
=1-1/2+1/2-1/3+...+1/49-1/50
=1-1/50<1
Vay M<1
\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(M=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{49}+\frac{1}{49}\right)-\frac{1}{50}\)
\(M=1+0+0+...+0-\frac{1}{50}\)
\(M=\frac{49}{50}\)
\(\Rightarrow\frac{49}{50}< 1\)
\(\Rightarrow M< 1\)
dấu chấm ở giữa hai số là dấu nhân à?
\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(M=\frac{1}{1}+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{49}-\frac{1}{49}\right)-\frac{1}{50}\)
\(M=\frac{1}{1}-\frac{1}{50}\)
\(M=\frac{49}{50}\)
Vậy M < 1
\(M=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
Vì \(\frac{49}{50}< 1\)\(\Rightarrow M< 1\)
VẬY M < 1
HK TỐT #
\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\)
\(\Leftrightarrow M< 1\)
M\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}<1\)
=>ĐPCM
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{49}-\frac{1}{50}\)
\(1-\frac{1}{50}=\frac{49}{50}\)
vì \(\frac{49}{50}<1\)
nên dãy trên <1
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
vì \(\frac{99}{100}< 1\)
nên \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}< 1\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}< 1\)
Vậy A<1
Đề sai! Đề đúng : M = 1/1.2 + 1/2.3 +........+ 1/99.100
M = 1 - 1/2 + 1/2 - 1/3 + .......+ 1/99 - 1/100
M = 1 - 1/100
M = 99/100 < 1
=> M < 1