\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

mỗi p/số của A đều bé hơn 1/1.2+1/2.3+1/3.4+......+1/49.50

A<1-1/2+1/2-1/3+1/3-1/4+..........+1/49-1/50(tách ra thành hiệu)

A<1-1/50

mà 1/50>0=>1-1/50<1<2

A<1-1/50<1<2

A<2

chúc học tốt

14 tháng 4 2016

\(A<\frac{1}{1\cdot2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49\cdot50}\)
          \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
          \(=1-\frac{1}{50}<1<2\)

22 tháng 2 2020

Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\) 

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)

=> A < 1 (đpcm)

22 tháng 4 2016

mình chỉ gợi ý thôi, vì viết cái này mỏi tay lắm thông cảm nha

Ở phần ''a'' bạn hãy đổi ra thành:2=2;4=2;.....sau dó bạn CM \(\frac{1}{2^2}<\frac{1}{1.2}.....\) rồi hãy suy ra nhỏ hơn \(\frac{1}{3}\)

còn phần ''b'' bạn hãy tách ra nha 

22 tháng 4 2016

à chỗ 2=2;4=2 bạn sửa thành : \(2=2^1;4=2^2\) nhé

19 tháng 6 2020

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}\)

\(B< \frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{8-7}{7.8}\)

\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)

\(B< 1-\frac{1}{8}< 1\left(dpcm\right)\)

14 tháng 8 2016

Ta có :

\(\frac{1}{3^2}< \frac{1}{2\times3};\frac{1}{4^2}< \frac{1}{3\times4};\frac{1}{5^2}< \frac{1}{4\times5};\frac{1}{6^2}< \frac{1}{5\times6};...;\frac{1}{100^2}< \frac{1}{99\times100}\)

\(\Rightarrow\) \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{99\times100}\)

\(\Rightarrow\) \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\) \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)

\(\Rightarrow\) \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)

\(\Rightarrow\) \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)

14 tháng 8 2016

giup mik nha

10 tháng 5 2017

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}.\)

\(A=1+\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+.......+\frac{1}{50\cdot50}\)

\(< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{49\cdot50}.\)

\(\Rightarrow1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(1+1-\frac{1}{50}< 2\)

=>A<2

ok xong

12 tháng 6 2020

A = \(\frac{1}{1^2}\) + \(\frac{1}{2^2}\) + \(\frac{1}{3^2}\)\(\frac{1}{4^2}\) + .... + \(\frac{1}{50^2}\)

A = 1 + \(\frac{1}{2.2}\)\(\frac{1}{3.3}\)\(\frac{1}{4.4}\)+ ...... + \(\frac{1}{50.50}\)< 1 + \(\frac{1}{1.2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+ ...... + \(\frac{1}{49.50}\)

A < 1 + ( 1 - \(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+ ...... + \(\frac{1}{49}\)\(\frac{1}{50}\))

A < 1 + ( 1 - \(\frac{1}{50}\))

A < 1 + 1 - \(\frac{1}{50}\)

A < 2 - \(\frac{1}{50}\)

=> A < 2

20 tháng 4 2016

đặt A=1/2^2+1/3^2+1/4^2+...+1/100^2

B=1/2.3+1/3.4+...+1/99.100

=1/1.2+1/2.3+1/3.4+...+1/99.100

=1-1/2+1/2-1/3+...+1/99-1/100

=1-1/100<1 (1)

Mà 1<2(2)

A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)

từ (1),(2),(3) =>A<2

20 tháng 4 2016

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1-\frac{1}{100}<1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\)

4 tháng 1 2018

Bạn xem lời giải ở đường link sau nhé:

Câu hỏi của nguyenducminh - Toán lớp 6 - Học toán với OnlineMath

4 tháng 1 2018

A=\(\frac{1}{1^2}\)\(+\frac{1}{2^2}\)\(+\frac{1}{3^2}\)\(+...+\frac{1}{50^2}\)

A<1\(+\frac{1}{1.2}\)\(+\frac{1}{2.3}\)\(+...\frac{1}{49.50}\)

=1+1-\(-\frac{1}{2}\)\(+\frac{1}{2}\)\(-\frac{1}{3}\)\(+...+\frac{1}{49}\)\(-\frac{1}{50}\)

=\(1+1-\frac{1}{50}\)

=\(2-\frac{1}{50}\)\(< 2\)

\(\Rightarrow A< 2\)