\(A=\frac{3^0+3^2+3^4+3^6+...........+3^{120}}{21}\)

CHỨNG MINH A THUỘC N

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2020

5A=\(\frac{1}{5}+\frac{2}{5^2}...+\frac{n}{5^n}...+\frac{11}{5^{11}}\)

=>4A=5A-A=\(\frac{1}{5}+\frac{1}{5^2}...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)

=>20A=\(1+\frac{1}{5}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)

=>16A=20A-4A=\(1-\frac{1}{5^{11}}+\frac{11}{5^{12}}-\frac{11}{5^{11}}\)

Mà \(1-\frac{1}{5^{11}}< 1\),\(\frac{11}{5^{12}}-\frac{11}{5^{11}}< 0\)

=>16A<1

Do đó: A<1/16(đpcm)

22 tháng 2 2023

cho địt t trả lời

 

13 tháng 7 2019

a) \(\frac{x-1}{6}=\frac{2x+3}{7}\)

\(\Leftrightarrow7\left(x-1\right)=6\left(2x+3\right)\)

\(\Leftrightarrow7x-7=12x+18\)

\(\Leftrightarrow5x+18=-7\)

\(\Leftrightarrow5x=-25\)

\(\Leftrightarrow x=-5\)

13 tháng 7 2019

b) \(\left(2x^2-\frac{1}{2}x\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x\left(2x-\frac{1}{2}\right)\left(x^2+1\right)=0\)

Vì \(x^2+1>0\)nên \(\orbr{\begin{cases}x=0\\2x-\frac{1}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)

2 tháng 1 2019

Tham khảo:Câu hỏi của Mắt Diều Hâu - Toán lớp 5  nhé bạn!

~ HọC tỐt ~ tth ~ 

10 tháng 7 2016

\(A=\left(3-\frac{1}{4}+\frac{2}{3}\right)-\left(5-\frac{1}{3}-\frac{6}{5}\right)-\left(6+\frac{7}{4}+\frac{3}{2}\right)\)

\(A=3-\frac{1}{4}+\frac{2}{3}-5+\frac{1}{3}+\frac{6}{5}-6-\frac{7}{4}-\frac{3}{2}\)

\(A=\left(3-5-6\right)-\left(\frac{1}{4}+\frac{7}{4}+\frac{3}{2}\right)+\left(\frac{2}{3}+\frac{1}{3}\right)+\frac{6}{5}\)

\(A=-8-\left(2+\frac{3}{2}\right)+1+\frac{6}{5}\)

\(A=-8-2-\frac{3}{2}+1+\frac{6}{5}\)

\(A=-9-\frac{3}{2}+\frac{6}{5}\)

\(A=\frac{-93}{10}\)

Mk lm đc 1 cách thui

Ủng hộ mk nha ^_-

19 tháng 4 2016

câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008

ta có:\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)

\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}

19 tháng 4 2016

câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008

\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)

\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\)\( (1)

\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2007.2008}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)

\(=1-\frac{1}{2008}\)<1 (2)

mà 1<3 (3)

từ (1),(2) và (3)=> đpcm