Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cmr [7+1].[7+2] chia hết cho 3
=8x9
=72
72 chia hết cho 3
ĐCPCM
Ta có chú ý chẵn cộng chẵn bằng chẵn
lẻ cộng chẵn bằng lẻ
lẻ cộng lẻ là chẵn
mà ta thấy \(3^{100}\) và\(19^{990}\)là lẻ mà lẻ cộng lẻ bằng chẵn
=> mà số chẵn chia hết cho 2
ĐCPCM
Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương
1) CMR: (7+1)(7+2)\(⋮\)3
\(\left(7+1\right)\left(7+2\right)=8\cdot9⋮3\left(đpcm\right)\)
2) CMR: \(3^{100}+19^{990}⋮2\)
ta có: \(3^{100}\)có chữ số tận cùng là số lẻ
\(19^{990}\)có chữ số tận cùng là số lẻ
mà lẻ + lẻ = chẵn => đpcm
3) abcabc có ít nhất 3 ước số nguyên tố
ta có: abcabc = abc x 1001 = abc x 11 x 7 x 13
Vậy...
4) Cho \(M=1+3^1+3^2+...+3^{30}\)
Tìm chữ số tận cùng của M. Từ đó suy ra M có phải số chính phương không?
ta có: \(M=1+3^1+3^2+...+3^{30}\)(1)
\(\Rightarrow3M=3+3^2+3^3+...+3^{31}\)(2)
(2) - (1) \(\Leftrightarrow3M-M=\left(3+3^2+3^3+...+3^{31}\right)-\left(1+3^1+3^2+...+3^{30}\right)\)
\(\Leftrightarrow2M=3^{31}-1\)
ta có: \(3^{31}=3^{28}\cdot3^3=\left(3^4\right)^7\cdot27=\left(...1\right).27=...7\Rightarrow2M=...7-1=...6\)
\(\Rightarrow\orbr{\begin{cases}M=...3\\M=...8\end{cases}}\)mà số chính phương không có tận cùng là 3, 8
=>đpcm
Học tốt nhé ^3^
Gọi d là ước chung của (m,mn+8) vì m lẻ => d lẻ.
Ta có m = kd (vì d là ước của m) => mn + 8 = kdn + 8
--> khd + 8 chia hết cho d mà khd chia hết cho d => 8 chia hết cho d --> d là ước của 8 do d lẻ => d = 1.
vậy m và mn + 8 là nguyên tố cùng nhau
1.n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!