Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kiểu khác
\(A=2^{2016}\Leftrightarrow A-1=\left(1+2+2^2+2^3+...+2^{2015}\right)\)
(2+2^2=6)=>VP chia 6 dư 3 => A-1 chia 6 dư 3 => A chia 6 dư 4
A=1+32+34+.............+32016
A=(1+32+34)+.........+(32010+32012+32014)+32016
A=7.13+...........+32010.(1+32+34)+32016
A=7.13+...........+32010.7.13+32016
A=7.(13+........+32010.13)+32016
Vậy A chia 13 dư 32016
Ta có:33=27 đồng dư cới 1 (mod 13)
=>(33)672 đồng dư với 1672(mod 13)
=>32016 đồng dư với 1 (mod 13)
=>32016 chia 13 dư 1
Vậy A chia 13 dư 1
Lời giải:
$C=(1+3+3^2+3^3)+(3^4+3^5+3^6+3^7)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})$
$=(1+3+3^2+3^3)+3^4(1+3+3^2+3^3)+....+3^{2013}(1+3+3^2+3^3)$
$=(1+3+3^2+3^3)(1+3^4+...+3^{2013})$
$=40(1+3^4+....+3^{2013})\vdots 40$
----------------------------------
Lại có:
$C=(1+3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8+3^9)+....+(3^{2012}+3^{2013}+3^{2014}+3^{2015}+3^{2016})$
$=(1+3+3^2+3^3+3^4)+3^5(1+3+3^2+3^3+3^4)+....+3^{2012}(1+3+3^2+3^3+3^4)$
$=(1+3+3^2+3^3+3^4)(1+3^5+....+3^{2012})$
$=121(1+3^5+....+3^{2012})\vdots 121$
6:5 dư 1
6 mũ 2 :5 dư 1
.........................
6 mũ 2016 : 5 dư 1
Vậy số dư của A khi chia 5 là:
1.(2016-1):1+1)